Linguistics Today
Vol. 1, No.1, July, 1997, pp. 34- 50

Electronic Dictionaries and
Computational Tools

K. Narayana Murthy
Department of CIS University of Hyderabad

L}

Introduction

Linguistics has come to assign an increasingly
central role to the lexicon in the recent past. Words of a
language, alongwith the phonological,morphological,
syntactic, semantic and other pieces of information
associated with these words form a very important part
of the knowledge of language. Dictionaries are
storehouses of such information and thus they have a
key role to play in NLP too. The development of large
computerized lexical knowledge bases has emerged as
probably the most urgent, expensive and time consuming
task facing linguistics and NLP. The importance of
computational tools for the design, development and
maintenance of such lexical knowledge bases cannot be
over emphasized.

In this article we sketch briefly a number of
relevant computational tools which are being developed
at the department of computer and information sciences,

Linguistics Today Vol. 1 No.1, 1997



Electronic Dictionaries & Computational Tools 35

University of Hyderabad, under the common title ‘tpTools’.
These tools are under different stages of development -
while some of the simpler tools are fully developed and
are in use for quite some time, some are still in the initial
stages of development. All these tcols have been
designed to work on personal computers and special
care has been taken to permit handling of large data. Data
can be as large as two giga bytes, or whatever is the
capacity of the secondary memory. We begin by
considering the various possible relationships between
dictionaries and computers and then we look at some of
the relevant tools briefly.

There are at least three different ways
computers interface with dictionaries:
Dictionary on the computer.
Computer for dictionary making.

Dictionary for the computer.

We will now look at these three aspects briefly,
with emphasis on the computational tools of relevance to
each of these.

Dictionary on the computer

A dictionary on the computer is a dictionary
which is made available in computer readable form rather
than as printed pages. Instead of turning the pages of a
printed dictionary, we can use the computer to search for
relevant information in the dictionary. In a minimal sense,

Linguistics Today Vol. 1 No.1, 1997



36 Murthy K.

therefore, the computer s acting only as a fast page turner.
However, in reality, computational tools give us not only
speed and convenience but they also enable us ta extract
relevant pieces of information contained in the dictionary
in more flexible ways than is possible in a conventional
printed dictionary.

To see clearly the advantages of such
dictionaries let us consider a few examples. Normally, the
entries in a dictionary are arranged in alphabetical order
so that words that we wish to look up can be quickly
located. Now, suppose for example that somebody wants
to stud{)how nouns acquire verb senses and vice versa.
He will be intersested in gathering words such as ‘shop’,
‘pen’, ‘table’, ‘cut’, ‘raise’, and ‘kick’ for his study. As a first
approximation, he may want to retrieve all words which
are marked as noun as well as verb in the dictionary. How
do we retrieve all such words from a conventional printed
dictionary ? There is no better way than to search
sequentially through the entire dictionary - a humanly
almost impossible task. For more examples, consider
retrieving all verbs whose past tense and past participle
forms are homonymous, all words of a particular
etymological origin, all bisyllabic words belonging to a
given grammatical category, or all words ending with any
of a given set of suffixes. In all these cases, and in many
other cases as well, all the required information is certainly
available within the dictionary. Yet it is very difficult to
extract the relevant information manually from a printed
dictionary. A dictionary on the computer and appropriate
computational tools make possible many new and
imaginative ways of accessing relevant pieces of
information than is possible from a conventional printed

Linguistics Today Vol. 1 No.1, 1997



Electronic Dictionaries & Computational Tools 37

dictionary.

A dictionary on the computer can also be quite
different from a conventional dictionary in terms of content
and organization. A conventional dictionary depicts all
relevant information associated with a given entry in one
place, as plain running text except that different type faces
and cther punctuation marks are used to help the reader
to quickly locate specific fields. In a computational
dictionary, the relevant fields may be organized in more
complex ways, for example, using database concepts,
HyperText or multimedia. A database is a structured
collection of information, organized so that a variety of
operations can Qe performed on either individual units or
groups of structural units. These operations help us to
select entries satisfying given conditions, to pick out only
those fields which are required and to display them in an
appropriate manner. While text is normally considered to
be entirely sequential in presentation, HyperText permits
textual data to be organized in complex non-linear ways
so that related items of text can be obtained easily on
demand. Multimedia tools have become commonplace
now-a-days. With a multimedia computer, we can also
associate pictures and sound with the dictionary entries.
Animated sequences and video clippings can also be
incorporated if required.

A dictionary on the computer has other
advantages as well. It never goes ‘out of print’ - updates
and new editions can be brought out a lot more easily.
Stored in CDs or floppies, it occupies less space, weighs
much less and is much more easy to carry along than a
printed dictionary. Stored on the hard disk of a computer
or computer network, the user is freed from having to carry

Linguistics Today Vol. 1 No.1, 1957



38 Murthy K.

the dictionary physically. It saves on paper and is therefore
environment friendly too.

The ability to access relevant pieces of
information in fast and flexible ways comes m:‘nly from
the way information is organized in the compute ind from
the associated algorithms which manipuiate this
information. We shall briefly look at some of the indexing
techniques in forthcoming section.

Computer for dictionary making

Computers also form a very important tool for
dictionary making or lexicography. Hardly any dictionaries
are prepared these days without the use of the computer
at some stage or the other. Here we will briefly sketch
some of the important tools that help us in dictionary
making.

To begin with we need to collect and select
the words that we wish to include as the entries in our
dictionary. A variety of tools can be used to help us in this
process. Starting with a corpus, a computer program can
separate the text into words and sort the words in many
different ways. For example, a wordlist sorted by frequency
helps u. to pick up frequently used words and to eliminate
words such as technical terms, abbreviations and
acronyms, proper names, loan words from other
languages, slang, words that have gone into the oblivion,
etc. There are other tools which help us to update a
wordlist based on a new corpus or other wordlists, and to
do union, intersection and different operation on worldists.
There are alsc a variety of more sophisticated tools that

Linguistics Today Vol. 1 No.1, 1997



Electronic Dictionaries & Computational Tools 39

employ heuristics and partial knowledge of language to
select, reject and rank words for final scrutiny by the
human expert.

Once the words are carefully selected, the next
step is to incorporate grammatical information including
the categories and other grammatical features.
Computatidnal tools can make preliminary guesses about
these categories and features to simplify the task of the
dictionary maker. There are basically two different sources
of information that can be used for such guessing. Firstly
there is often some information within the word itself. For
example, a complete word form (that is, a fully inflected
word) may have morphological affixes which indicate
possible grafnmatical categories as also the root form of
the word. The 'second type of clue lies in the sentential
context in which a particular word is used. The context, in
particular the adjacent words, often carry substantial
amount of information about the grammatical categories
and other features. For a simple example, words that follow
determiners like ‘the'in English are most likely to be either
adjectives or nouns. A smart tool can apply many different
heuristics and combine evidence from multiple sources
to make fairlygood guesses.

Further, tools such as the KeyWord In Context
(KWIC) tool go a long way in helping the lexicographer to
identify word senses, pick out good examples from the
corpus etc. The KWIC tool displays the various textual
contexts in which a given word is used in the corpus.
Typically, a KWIC tool gives either complete lines
containing the specified word or a specified number of
words to the left and right of the given word. A somewhat
more sophisticated tool can list complete sentences rather
Linguistics Today Vol. 1 No.1, 1997



40 Murthy K.
than complete lines of text from the corpus.

A major advancement in the KWIC tool will be
the ability to provide a filtered context, giving only the
important parts of the sentence rather than the whole
sentence. For examp,e, the various senses of the word
‘handle’ depend mainly on what is handled (handle
household accounts, handle the brush, handle troops,
handle a person etc.). In computer science mere
availability of informations not of much interest, extracting
the relevant portions and only the relevant portions, from
the large storehouse of information is crucial. Filtering out
the hit sentences has double effect in reducing the
information load - it reduces the amount of irrelevant
information displayed in each sentence involving the given
keyword, and consequently, it also reduces the number
of different sentences displayed since sentences which
differ only in the less significant parts can be pruned. The
ultimate in KWIC would be a parser based tool that can
parse each sentence including the given keyword and then
display the relevant parts in a structured manner. This
makes the task of the human expert much simpler.

A second kind of improvement that can be
made over conventional KWIC tools is related to
morghology. Most available KWIC tools can search only
based on exact string match and hence cannot deal with
«flected and derived words effectively. A shortcut often
fcllowed in practice is to specify only a part of the keyword
that will be included in all or most of the inflected and
derived words. For example, to include sentences with
‘handie’, ‘handled’, ‘handling’ as well as ‘handles’, we may
specify the keyword as ‘handl’. But the output would then

Linguistics Today Vol. 1 No.1, 1997



Electronic Dictionaries & Computational Tools 41

include sentences with ur.related words such as ‘chandier
and ‘chandlery’. A good morphological analyzer is
therefore an essential part of a good KWIC tool, especially
for Indian languages.

There are also other tools for creating,
updating, managing, compressing, indexing, accessing,
printing and analyzing large dictionaries and corpora. A
non-word analyzer program takes a corpus and checks
the words in it against a given dictionary and a
morphological analyzer. The results are useful for
validating and/or enriching the dictionary as well as the
morphological analyzer. Tools also exist for entry and
validation ofs dictionary items, internal consistency
checking and for performing a variety of analyses on the
dictionary itself. For example, we may list out all the words
which are used in defining the meanings of the head words
in the dictionary. We may check that all these words, which
are normally taken to be the simplest of the words in the
language, are also included as head words. We may
ensure, for another example, that the definitions are not
cyclic, that is, two or more words are not defined in terms
of each other.

Dictionary for the computer

Electronic dictionaries are also directly usabie
by computer programs. Electronic dictionaries or lexicons
as they are known in NLP and linguistics, form an integral
compoent of almost every activity in computational
linguistics and NLP - vocabulary studies, spelling error
detection and correction, word processing and text
critiquing systems, automatic abstracting and indexing,

Linguistics Today Vol. 1 No.1, 1997



42 Murthy K.

concordance, frequency analysis and other statistical
studies, stylistics, lexicographers’ workbench, hypertext
databases, morphological analysis and synthesis, text
tagging, parsing and generation, story understanding,
taxonomical studies, knowledge acquisition, machine
translation, question answering, natural language
interfaces to databases, information retrieval, speech
synthesis, speech recognition, computer aided instruction,
psycholinguistic studies, office automation, etc.

We are not concerned here about the contents
and conceptual organization of the lexicon. The answers
to such questions depend heavily on what the specific
application demands. The questions of content and
organization are also closely tied up with theoretical
framework. The Demands on the lexicon in _exical
Functional Grammar framework, for exampie, are very
different from the demand made by say, Tree Adjoining
Grammar.

We can only say here that the requirements of
a dictionary for use by the computer are oiten quite
different from the requirements for dictionary meant for
use by human beings. For example, while monolingual
dictionaries meant for human use define head words in
terms of other words of the same language, such a thing
would not make much sense in an NLP application. At
present our bundle of computational tools includes only a
few application specific tools, mainly including those
related to spell checking, morphological analysis and
synctatic parsing under the UCSG framework.

Indexing Techniques

Linguistics Today Vol. 1 No.1, 1997



Electronic Dictionaries & Computational Tools 43

Indexing helps to locate a specific information
quickly. Indexes also help us to view a single physical
lexicon as if it were organized in several different ways.
For example, if we need to look at the dictionary entries
sorted in the right-to-left alphabetical order of the head
words, we do not need to store or print another version of
the entire dictionary sorted in that manner. The information
content in the ‘normal’ and ‘reverse’ dictionaries are
exactly the same, only the organization ot the information
is different. Hence, we do not need to duplicate all the
information and create another version of the dictionary,
just an index will do. In fact dictionaries, thesauri,
gloossaries and encyclopedias have substantial amounts
of overlap in terms of the information they contain and
hence combinations of these can be made available on
the computer with a minimum amount of redundancy.
Thirdly, indexing also helps us to extract relevant pieces
of information in a very flexible manner. Let us now take a
quick look at some of the most important indexing
techniques.

The simplest thing we can do is to store the
entire dictionary as a single text file, using certain
delimiting characters to demarcate the different fields. Let
us call this file the dictionary file. It must be noted that
text file is simply a sequence of characters. There is no
further structure in it which can be exploited by computer
programs. Also, the fields of an entry will all be of variable
lengths in a dictionary. Even the head words will be of
variable lengths. Hence to search for a given word, we
have to search, or at least skip over, all the fields of the
- dictionary, not just over the head words. Also, we cannot
get any milage out of the fact that the entries can be sorted

Linguistics Today Vol. 1 No.1, 1997



e Murthy K.

on the head words. Thus this organization is the least
efficient.

A major improvement over this organization is
to add another file called the index file. The index file is a
Structured file containing two fields. The first field contains
the head word and the second field contains a number
indicating the location of the corresponding entry in the
dictionary file. With this organization, to search for the
details of an entry, we start by searching for the given
word in the first field of the index file. If it is found, the
second field tells us where exactly in the dictionary file
the required information is stored. Of course, to reach
that location in the dictionary file, we may have to start
from the beginning and skip the required number of
characters in the most straight forward implementation.
With some more sophistication added to exploit the way
the text file is physically stored in the memory, this process
can also be made a lot more efficient.

In any case, use of an index file is a substantial
improvement since to search for the given head word we
need not look at all other fields. Further, since the index
file is structured, we can have the head words sorted on,
say, alphabetical order and then make use of more efficient
search techniques such as binary search. Binary search
has scmethings similar to the way we normally search for
a given word in the conventional printed dictionary. To
search for a given word we do not always start from the
first word in the first page of the dictionary and proceed
linearly. We usually start somewhere in between and by
comparing the given word with the words on the page we
have opened, we decide to go further into either the part

Linguistics Today Vol. 1 No.1, 1997



Electronic Dictionaries & Computational Too's 45

of the dictionary before that page or the portion after that
page. To use binary search, let us assume that the fields
are of fixed lengths (we can make the field width big
enough to accommodate all the head words). Let us also
. assume that the fields are sorted. Then we can directly
calculate the location of the middle item in the list. We
compare the given word with the word at the so computed
middle location and depending upon which is
alphabetically greater, we decide to throw off either the
first or the second hall and continue the search by the
same method in the remaining portion. We continue the
search until the given word is found or until portion of the
dictionary to be searched further becomes empty in which
case we can say for sure that the given word is not found
in the dictionary at all. To clearly see the advantages, it
can be verified that to search for a given item in a sorted
list of 1000 items, sequential search rquires 1000
comparisons in the worst case whereas binary search
requires only 10 comparisons even in the worst possible
situation. To search for a word in a wordlist of one million
words, it takes a maximum of only 20 comparisons.

Binary search is effective only when the index
file is small enough to fit in the main memory of the
computer. Often dictionaries are larger than this and we
need to go for the other indexing techniques wholly or in
conjunction with the basic indexing scheme just described.
One possible extension of binary search is B-Tree
indexing. Binary search is effectively a search in a sorted
and baianced binary tree - at each step we compare the
given word with the word at a particular node in the binary
search tree and depending upon which is greater, we
continue the search down the right subtree or the left A

Linguistics Today Vol. 1 No.1, 1997



46 Murthy K.

B-Tree is also a balanced and sorted tree but each node
contains a larger number of key words. A B-Tree of order
15, for example, is equivalent to dividing the dictionary
into fifteen equal parts, each one of these again into fifteen
equal parts, and so on, as long as we need to go on
splitting like this. Therefore, at each step in the process
of search, we compare the given word with upto 14 words
and depending upon the comparisons decide which
portion to use for continuing the search.

It is also possible to use compound keys with
multiple sorting in B-Trees. For example, the keys may
specify the length of the keyword, the first character and
the last character. Then to search for a given word, say
‘apple’, the search will be focused on five letter words
starting with ‘a’ and ending with ‘e’. By judiciously using
compotind keys, we can reduce the effective area of
search itself and thus achieve very high efficiency.

If we go on further and provide enough
information in the key to locate the required word straight
away, we have come to a scheme called hashing. A hash
function takes a given word as input and after some simple
calculations tell us straightaway where exactly that word
is located in the dictionary. To see the point, let us assume
that we i»»ve no more than one word in our dictionary of a
given length, given starting letter and given ending letter.
Then, by combining these three clues, the hash function
can straightaway tell us where exactly the given word is
stored in the dictionary if at all. In practice it is not easy to
design hashing functions which are simple enough and
at the same time effective enough for large dictionaries.
However, combined with other indexing techniques,
hashing can substantially reduce the effective search

Linguistics Today Vol. 1 No.1, 1997



Electronic Dictionaries & Computational Tools 47

space.

In all the schemes seen so far, we are basically
making comparisons between entire words. There is an
indexing scheme called TRIE, wherein the comparisons
will be for individual characters and thus much faster. In a
TRIE we store the locations of entries whose head words
include specified prefixes. Thus to search for the word
‘apple’, we first look for words starting with ‘a’, then
continue the search and look for words starting with ‘ap’,
the ‘app’, and so on. The complexity of searching with a
TRIE is not dependent on the number of entries in the
dictionaries but only on the length of the head words. If
the longest head word in the dictionary is 'n’ characters
long, it takes no more than ‘'n’ character comparisons to
locate any word in the dictionary. Thus searching for a
word in a TRIE can be extremely fast. However, a straight
forward implementation of the TRIE index would require
an enormous amount of memory. This is because we will
have to say explicitly that there are no words in our
dictionary starting with, say, ‘aa’, ‘aaa’, ‘aaaa’, etc. A full
TRIE for a dictionary with the longest head word of size
‘n’ requires a memory of the order of the size of the
alphabet raised to the power of n+1, an extremely large
number of even moderate values of n.

Thus we see that an indexing technique which
is extremely efficient in time may be hopelessly bad in
space requirenments. In general there is often a trade off
between space and time in computer science. Thus no
single technique may be good enough in a given situation
and we must be able to find out the right combination that
gives us the overall best performance. The decision is of

Linguistics Today Vol. 1 No.1, 1997



48 Murthy K.

course highly data dependent.

Our ‘tpTools’ includes tools to experiment with
given data and figure out the best indexing scheme. Some
specific combinations are also recommended for general
use. In particular, a two level indexing scheme combining
a TRIE index and a sorted index file has been shown to
be very promising for most applications. Also, we have
provided just two simple user controlled parameters by
adjusting which one can get the best performance on any
given computer with specified amounts of main memory.

While we have restricted ourselves to the
problem of looking a given head word in our dictionary in
the above discussions, a good indexing scheme is
supposed’to help you in retrieving many other useful
pieces of information from the given dictionary. We have
already seen in section 2 several such examples. ‘tpTools’
also includes tools to help you in this. Further, there are
additional and special requirements when it comes to
handiing Indian languages. For example, many of our
languages exhibit extremely rich inflectional morphology
and obviously no dictionary lists all the inflected forms of
all the words. Hence morphological analysis is an integral
and inseparable part of dictionary look up in these
languages. ‘tpTools’ includes some tools specifically
designed for Indian languages. Indian scripts in the GIST
notation are directly supported in most of the tools. Inter-
conversion programs are also included to enable users
to employ other script notations.

Conclusion
Linguistics Today Vol. 1 No.1, 1997



Electronic Dictionaries & Computational Tools 49

In our country there are several organizations
seriously engaged in research and development in
computational linguistics and NLP. But our lexical
knowledge bases in computerized forms are minimal. We
do not have, even in the printed form, all the required
monolingual, bilingual or multilingual dictionaries let alone
dictionariés for use by computer applications. We do now
have small corpora for some of the major languages. There
is need to make these corpora really available for use
and there is need to enhance their size too. While many
word processors and DTP packages for Indian languages
are now available, the amount of textual data already
available in computer readable form is rather small.
Different cotnmercial packages follow different coding and
storage techniques which are often guarded carefully as
trade secrets and so there is need to develop suitable
interfaces for extracting pure text from these word
processors and DTP systems for linguistic and NLP use.
Since Optical Character Recognition Systems for Indian
language scripts are also far from reality, corpus building
in India has to still depend on manual typing in of texts.

Given this scene, development of
computational tools for creation, management and
application of textual databases, wordlists and lexicons
for a variety of linguistic, lexicographic and NLP
applications seems to be one of the most urgent needs.
In this article we have briefly described some such tools
being developed at the department of computer and
information sciences, University of Hyderbad. These tools
are all in different stages of development and testing.
While we cannot promise readymade solutions to specific

Linguistics Today Vol. 1 No.1, 1997



50 Murthy K.

problems, we hope that the tools will be of general use to
many. We also hope that the initial and definitely sketchy
descriptions of these tools given here will spark off enough
interest among potential users and force us to strive hard
to meet their demands in full.

REFERENCES

Briscoe, E. J. & B. K. Boguraev (1988) Computational
Lexicography for Natural Language Processing.
London: Longman.

Knowles, Gerry (1994) Annotating Large Speech Corpora:
Buil.ding on the Experience of Marsec, Hermes 13

Linguistics Today Vol. 1 No.1, 1997



