FAST TRRAINING OI' LARGE TRAINING
SIHTS IN BACIK PROPAGATION NETWORIKCS
BY SELECTIVE PRESENTATION

I LAKKSIIMI NARAYANA ATUL NEGI
K.NARAYANA MURTHY

Artificial Intelligence Laboratory
University of ITyderabad
Iyderabad 500 134, India

fax-91-842-253145, telex-125-2050 UTIYD IN
c-mail : knm-cs@uoliyd.crnet.in

Abstract
Recenily many braining schemes have been proposed for speeding up the Back
Uropagation alyorithims. In this paper a novel mcthod is proposed. I our method
scleclive and repelitive slep-by-step enlargement of a preliminary subsetl of « large
tratning sct is made. This technique is applied on a lraining sct of size 1002 for
learning the inverse dynamics of a two-link planar manipulator,

keywords: Jetificial Neural Networks, Back Propagation Nelworks, Learning,

Laobolics, Tnverse dynamics,

1 Introduction

Multilayer Back Propagation Network (BPN) has become an extremely important and
popular Artificial Neural Network (ANN) model because of its power and versalility in
learning a large varicly of non-linear lunctions. Il is one of the most useful and well-studied
ANN algorithim in the present avena of Neural Network rescarch.

Training methods for multilayer perceplrons were lirst, developed by Paul Werbos and
independently by David Parker. The most popular BPN algorithm was rediscovered by
Rumelhart and others [5]. The basic clements of a typical BPN are a Mc Culloch & Pitts
lincar lilter with a sigmoid output [unction and Rosenblatt coupled error corvection. I is
an example of a multi-layered feed-lorward nelwork.

The learning procedure involves the presentadion ol a set ol pairs of inputl and outpul
patterns. The nelwork fiest uses the input vector Lo produce its own oubput veclor and
then compares Uhis with the desired output or target veetor. I there is no differcuce, no
learning Lakes place. Otherwise, the weights are changed to reduce the difference. The

I

algorithm is dealt in detail in [5]. In this paper we first review some methods for speeding
up BPN learning. In section 3 we present our proposed method. I'inally we conclude with
an application of the proposed method to the inverse dynamics of a two-link robot.

2 Fast Learning BPNs

The BPN is a powerful mapping network which has been successlully applied to a wide
range of problems. However, a major limilation of BPN is that its convergence is slow.
This is a serious limitation of performance in real world applications. Various approaches
have been proposed in the recent past to improve the convergence rate of the networks.
One of the alternatives is to adopt ANN algorithms with similar classification performance
as the BPN but with faster training capabilities. Examples of such networks are counter
propagation networks. Another way of improving the speed is by using a modificd acti-
vation function. Examples of such approaches are Fahlman [5], Jacobs [3] and Samad [6].
In the present approach a heuristic technique is used to enhance the convergence speed.
The method is based on using a selective sequence of presentation of the training sct.

Rumelhart ct al [5] added to the basic BPN algorithm, a momentum term ¢, so as
to improve the learning speed. The addition of the momentum term filters out the high
frequency variations of the error surface in the weight space. In most of their simulations
they recommend the value of « as 0.9 and state that the system can learn much faster
with larger values of learning rate and momentum term.

Fahlman [1] proposed some techniques to enhance the learning rate in his “Quick
Propagation” algorithm. In this the problem of 'flat spots’; where the derivative f the
sigmoid function approaches zero is considered first. In such cases the oulput of the
sigmoid is replaced by either a constant value or a random number between 0.0 and 1.0.
An improvement of 20% on his class of bench-marks in encoder/decoder problems, was
reported. In other classes of problems, information about the rate of gradient descent in
the previous epoch is used to update the weights. This method when applied iteratively,
was found to be quite eflective.

Delta-bar-Delta algorithm of Jacobs [3] is another technique for BPN speed-up. Jacobs
suggested four heuristics: (i) Each weight has its own learning rate. (ii) These learning
rates are varied based on the error surface information. (iii) When the error surface gra-
dient has the same sign for many iterations, the corresponding learning rate is increased,
since it indicates that a minimum lies ahead. (iv) When the error surlace gradient [lips
signs for several conseculive time steps, the learning rate is decreased, since this indicates
that a minimum is being jumped over. These parameters arc specified by the user for
modifying the learning rates in this scheme. Though these heuristics have shown consid-
erable speed-up, there are certain drawbacks. Simulations by Jacobs himsell showed that
the technique is very sensitive to small variations in the values of ils parameters. It is
also diflicult to preselect a desired sel of parameters.

Samad’s (6] variation aims at compensating for not only present weight changes but
future expected changes as well. Ile used a method called “expected source values”.

e e e

However, Godhwani,K.K., [2], found that Samad’s variation did not appear to converge

for low value of learning rates and took a large number of training epochs, as compared
to Fahlman’s and Jacob’s methods.

3 Proposed Method

There are cerlain tasks in the real world where the amount of knowledge to be learnt
by a network is huge. In such a situation, the state space to be learnt by the network
is very large. Hence the exemplar set is also very large. The network needs a long time
for training this state space. In the conventional method of training the network, all the
patterns in the exemplar set are presented to the network during each training epoch.

Consider an exemplar set U, containing n =| U | (the cardinal number of the sel
U) input-output patterns. Let 't' be the time taken for the forward and backward
propagation of a sample training pattern. If N training epochs are performed, the
total time T,opn taken for performing N epochs in the conventional method would be

Teon=nxN x1 (1)

In the present method of training, a subset of the exemplar scl, which we call the
“training set”, is initially presented to the network and certain number of training epochs
are performed. Keeping the structure of network the same, but using the updated weight
matrix of the last epoch, some more patterns are added to the subset from the exemplar set
and the training is continued for some more epochs. This process of enlarging the initial
training set is continued repeatedly until the training set equals the original exemplar sct.

Let U be the exemplar set. Let the first subset be Ay. The process of enlargement is
performed for 'p’ times. The training sets are Ay, Az, ..., Apy1, where

Al C Ag C A3 G o [Ap+1 & Ap-l'l = L{ (2)

Let n =| U IJ ny :\ Al IJ T2 :I AZ IJ"') Npt1 = | A.‘P+1 |
Let Ny, Ny ,...,Np4q be the number of epochs performed using the training subsels
Ay,Ay,...,Apyr respectively.

The total time T for performing the training will now be

T = (?’LlN] -+ ngNg + ..+ np+1Np+1) X 1

’ p+1
= T:tXZ(n,;XN,') E (3)
1=1
Total number of epochs by conventional training method = N
Total number of epochs by the present method = Y24 N,

1=1 1

The values of IN; are chosen such that ,

and the performance achieved is compared with that of the conventional method.
Since

g <Ny < oo <MNyyy and nyyy =n

we have from (1) and (3),

i L -
Thus this technique will require lesser time than the conventional method of training.

We select A; by a uniform sampling of the entire training space. The weight values
learnt after training for A; are a good initial set of training weights for the superset A;y,.
Because of the good initialization the output values are in a closer range to the desired
output values, requiring lesser weight adjustments. Hence the training time is reduced.

4 Robot Simulator

The dynamic equation for an N-link manipulator is

H(q)i + C(g,4)q+Gl(q) + K(q) k= (4)

where,

e [(q)is an N x N symmetric, non-singular Moment of Inertia matrix

e C(q,¢).is an N x.N malrix specifying centrifugal and Coriolis eflects

G(g) is an N x 1 vector specifying the eflects due to gravity

K(q)is a 6 x N Jacobian matrix specifying the torques created at each joint due to
external forces and moments exerted on the final link. K (¢)? indicates its transpose.

e kis a6 x 1 vector of external moments and forces exerted on the final link The

first three components of this vector are the external forces on N and the last three,
moments exerted on N.

e 7is a [V x 1 vector of torques at each joint.

g is an N x 1 vector of joint positions

q is an IV x 1 veclor ol joint velocities

e ¢isan IV x 1 vector of joint accelerations.

Ep—

VS

O e 4t —

When ¢ =0,

Clayd)+ Gla) + K(g) "k =

‘I'his torque is called the “bias torque” b, llence

H(q)q= (7 —b) (5)
The bias vector b is computed by setting ¢, ¢ & k to their current values and letting

G = 0. The elements of the matrix H(q) can be obtained from any of the methods in [7].
For any given input torque 7 the simulator computes § using (5).

In the present work a two-link planar manipulator is considered. It is assumed that all
the mass exists as a point mass at the distal end of each link. The dynamic equations for
this manipulator can be easily obtained, manually by using the standard Newton-Iuler
manipulator dynamics formulation. Then,

i 01 - 0:1 . 0.1 T = 71
4= 02 q= 02 q e 02 = Tq
Assuming that there are no external forces or moments, (4) reduces to

r = H(0)0 +C(0,0) + G(6) \ (6)
where

H(®) = { By + 2l bymac, + B(my +ma) B + Lilymacy]

lzmg + lllngCZ I?Tnz
2 2

Ny —TnglllQSQO.% - 2?7’12[112320192
0(6’6) h 1: mglllQSgéf

G(@) = malageis + (my + ma)lige
malagcys

where l; & [, are the link lengths, m, & m, are the link masses, 0; & 0, are the joint
angles, 91 & 82 are the joint angular velocities, 91 & 92 are the joint angular accelerations,

c1 = cos(f), ca = cos(fy), c12 = cos(f1 + 8,), 51 = sin(fy) & s3 = sin(0dy).

An input torque pair {1, 7} is given, the corresponding accelerations {0y, ()2} at the
given initial positions {0, 0, } and initial velocities {0, 05} are computed by the simulator,
using (6).

5 Learning

A BPNis trained to learn the inverse dynamics of the two-link manipulator. Learning
involves the following stages:

e Exemplar Set Generation

e Training

SRSEIPLINE P S,

5.1 Exemplar set Generation

A set of input torque values, initial positions and initial velocities are given to the simula-
tor and the corresponding accclerations generated at the respective joints of the manipu-
lator are computed. An exemplar set is generated according to the following configuration:

input vector 0y, 01, 01, 0,, (jg, 0y
desired output vector : 74(= 1), Te2(= 72).
The ranges selected for various joint variables are as follows:

0, =0-0.5 rad. 02 =0—0.5 rad.
0, =0~—1 rad./sec 0y =0—1 rad./sec

Based on a few tests using the inverse dynamic model, a set of input torques in the
range

Td1:14—18 Nm Td2:4z—8N7TL

are selected. The joint positions of each link are incremented by 0.125 rad, starting from
0 rad. The joint velocities of each link are incremented by 0.25 rad/sec, starting from
0 rad/sec. So aset of 5 x § x § x 5 = 0625 combinations are obtained. I'he torques are
incremented by 0.1 Nm starting from 14 Nm and 4 Nm of the first and second links
respectively. Thus 41 different combinations are obtained for each link. Giving these
as input torque commands the corresponding accelerations generated in the links are
computed. The total number of accelerations computed would be

5 x5 xHxHx4l x41 =1050625

Qut of this large number, we sclected 1002 patterns restricting the accelerations to
the range =2 to +2 rad/sec?. Thus an exemplar sel of size 1002 is formed.

5.2 Training

The inverse-dynamics problem of a robotic manipulator is stated as: Given lhe inilial
positions, velocities and acceleralions of the respective links of the manipulator, Lo compule

the torques that are to be given at the joints. Fig. 1 shows the setup. Hence, the network
learns the following rule:

To develop an acceleration of 0, and 0, in the links, with the given wnitial positions
0, and 0, and initial velocities 0, and 0, torques equivalent to the outpul of the
network i.e., T, and 1, are to be given lo the robot.

Three networks of different topologies 6-4-2, 6-8-2, 6-13-2 (ligures correspond to input
layer nodes, hidden layer nodes and output layer nodes respectively) trained by both the
conventional and proposed methods for the above rule. After the training, 10 test patterns
are randomly selected (some from the exemplar set and some outside the exemplar set),
and the network is tested for generalization.

wtoim Nl - s i B

P .

The error for a tesl pattern = nelwork oulpul — actual oulpul

The rms error of the ten Lest patterns is chosen as the criterion for comparing the
performance of the two methods.

The results obtained are as shown in table 1.

6 Conclusions

From table 1, we see that the proposed heuristic has shown considerable speed up com-
pared to conventional method. For the considered problem a speed up of nearly 50 % is
obtained. In terms of the rms error the proposed method is comparable or better than
the conventional method.

As compared to other speed-up techniques, which rely on the exact values of critical
parameters, the proposed method is not very sensitive to actual values of parameters like,
p, V; and n;. This method shows a lot of promise. More theoretical and experimental
studies are being conducted.

References

1] Fahlman,S.IE., “An empirical study of learning speed in back propagation necural
g sp propag

networks”, CMU. Technical report, CMU-CS-86-162., June, 1988.

[2] Godhwani,K.K., “Back propagation variations : Comparison for oplical character
recognition”, University of [Iyderabad, M.tech thesis., January, 1993.

[3] Jacobs,R.A., “Increased rates of convergence through learning rate adaption”, Neural
Networks, vol. 1., pp 295-298., 1988.

[4] Lakshmi Narayana,K., “Learning the dynamic behavior of a robotic manipulator
using neural network techniques”, University of Hyderabad, M.lTech thesis., July,
1992.

(5] Rumelhart,D.E., Hinton,G.E., & Williams,R.J., “Learning internal representations
by error propagation”, in Rumelhart,D.E. and Mc Clelland (Eds.)., Parallel Dis-
tributed Processing : Explorations in the micro-structures of cognition, 1., pp318-

362., Cambridge, MA : MI'T press, 1988.

[6] Samad,T., “Back propagation with expected source values”, Neural Networks, vol.4.,

pp615-618., 1991.

[7] Walker, M.W., Orin,D.E., “Efficient dynamic computer simulation of robotic mecha-
nisms”, Trans. of the ASME Journal of Dynamic Systems, Measurements and Con-
trol, vol. 101, ppl87-192, September, 1979.

Tnls Tn

; ®'raining Nelwork
0,j) ¢
0 0,
v | 0
. 2 - T2
§1mu1a,t0rl(
- T

Fig. 1 The initial angular positions 61,8, velocities 6y, 6, and desired torque values
Td1,Td2 are given to the Simulator. It computes the accelerations 91,82 These
accelerations are given to the training network along with the initial positions
and velocities. These torques computed by the network 7,,; and 7,5 are compared
with the desired torques and the error e between these is backpropagated. The
weights are modified according to the algorithm in [5]

N PSS S S

-

Table 1

Conventional Method Proposed Method
P = 4
Size of the Set n = 1002 ny = 50;n2 = 100;n3 = 400;

ng = 800;n; = 1002

No. of Epochs 150 Ny = Ny = Ny = Ny = Ny = 80
SR Ny =150

Total time taken Toon = (1002 x 150 x t) T = (50 x 30 + 100 x 30+

400 x 30 + 800 x 30
+1002 x 30) x ¢

— 1,50, 000t = 70,5604(= Teon/2)

Network Topology | 6 -4—-2|6—-8-2|6—-13-2|6-4-2|6-8-2|6-13-2

rms error 0.0554 0.1039 0.0872 0.0581 0.0659 0.0824

NOTES:

1. In both cases learning rate of 0.15 and a momentum value of 0.9 were used in the Back Propagation
Algorithm as stated by Rumelhart et al.[5]

2. ‘p’ stands for the number of enlargements

