
UCSG Shallow Parser

Guntur Bharadwaja Kumar and Kavi Narayana Murthy

Department of Computer and Information Siences,
University of Hyderabad, India

knmuh@yahoo.com, g_vijayabharadwaj@yahoo.com

Abstract. Recently, there is an increasing interest in integrating rule
based methods with statistical techniques for developing robust, wide
coverage, high performance parsing systems. In this paper1, we describe
an architecture, called UCSG shallow parser architecture, which com-
bines linguistic constraints expressed in the form of finite state grammars
with statistical rating using HMMs built from a POS-tagged corpus and
an A* search for global optimization for determining the best shallow
parse for a given sentence. The primary aim of the design of the UCSG
parsing architecture is developing a judicious combination of linguistic
and statistical methods to develop wide coverage robust shallow pars-
ing systems, without the need for large scale manually parsed training
corpora. The UCSG architecture uses a grammar to specify all valid
structures and a statistical component to rate and rank the possible al-
ternatives, so as to produce the best parse first without compromising
on the ability to produce all possible parses. The architecture supports
bootstrapping with an aim to reduce the need for parsed training cor-
pora. The complete system has been implemented in Perl under Linux.
In this paper we first describe the UCSG shallow parsing architecture
and then focus on the evaluation of the UCSG finite state grammar for
the chunking task for English. Recall of 91.16% and 93.73% have been
obtained on the Susanne parsed corpus and CoNLL 2000 chunking task
test data set respectively. Extensive experimentation is under way to
evaluate the other modules.

Keywords: Chunking, Shallow Parsing, Finite State Grammar, HMM,
A* search, UCSG Architecture.

1 Introduction

Although a lot of work has gone into developing full syntactic parsers, high
performance, wide coverage syntactic parsing has remained a difficult challenge
[1]. In recent times, there has been an increasing interest in wide coverage and
robust but partial or shallow parsing systems. Shallow parsing is the task of re-
covering only a limited amount of syntactic information from natural language
sentences. Often shallow parsing is restricted to finding phrases in sentences, in
which case it is also called chunking. Steve Abney[2], has described chunking as
1 The research work reported here was supported in part by the University Grants

Commission under the UPE scheme.

A. Gelbukh (Ed.): CICLing 2006, LNCS 3878, pp. 156–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

UCSG Shallow Parser 157

finding syntactically related non-overlapping groups of words. In CoNLL chunk-
ing task[3], chunking was defined as the task of dividing a text into syntactically
non-overlapping phrases. The term phrase has come to acquire a very special
technical connotation in linguistics and in order to avoid confusion, chunks are
also referred to as word groups.

As an example, the sentence “He reckons the current account deficit will
narrow to only # 1.8 billion in September” could be analyzed as follows by a
chunker [3]:

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow]
[PP to] [NP only # 1.8 billion] [PP in] [NP September].

Note that prepositional phrases have not yet been built, let alone resolving
ambiguities in prepositional phrase attachment. Nor have the thematic roles been
assigned to the chunks. Partial parsing systems do a bit more than chunking
while still not promising complete syntactic analysis.

Developing computational grammars is a challenging task, even if we restrict
to partial parsing. There are broadly two approaches for the development of
grammars - the linguistic approach which depends upon hand-crafted rules, and,
the machine learning approach where grammars are learned automatically from a
parsed training corpus. Developing wide coverage linguistic grammars has proved
difficult in practice. Parsed training corpora are also rarely available. Hence the
interest in the search for a judicious combination of linguistic and statistical
approaches.

In this paper we propose an architecture for shallow parsing, which we call
UCSG Shallow Parsing Architecture. The UCSG (Universal Clause Structure
Grammar) framework was developed during the early nineties at University of
Hyderabad, India. Please see [4, 5] for more on UCSG. In this paper we use only
one of the modules of UCSG namely the Finite State Grammar. In the UCSG
Shallow Parsing Architecture, the Finite State Grammar is designed to accept
all valid word groups but not necessarily the only those word groups that are
appropriate in context for a given sentence. Many additional word groups may
also be recognized. The focus in this phase is only on completeness, for, there is a
second module consisting of a set of Hidden Markov Models, which will rate and
rank the word groups so produced. An A* search algorithm is then used as the
final module to obtain globally best chunk sequences for a given sentence. The
aim is to produce all possible parses but hopefully in the best first order. The
complete system has been implemented in Perl under Linux. The performance of
the Finite State Parser has been evaluated on the Susanne parsed corpus as well
as CoNLL 2000 chunking task test data set and Recall of 91.16% and 93.73%
respectively have been obtained. Extensive experimentation is going on to refine
the system through bootstrapping and to evaluate the overall performance.

2 A Brief Survey of Shallow Parsing Systems

Steve Abney [6] proposed finite state cascade models for the chunking task.
Grefenstette [7] proposed methods to use finite state transducers for partial

158 B.K. Guntur and N.M. Kavi

parsing. Parsing with finite state transducers [8] was very popular in the early
ninety’s. Marc Vilain et al. [9] used rule based sequence processors for the chunk-
ing task. Herve Dejean [10] used ALLiS (Architecture for Learning Linguistic
Structure), which is a symbolic machine learning system for the chunking task.

Miles Osborne [11] proposed maximum entropy based POS tagger for the
chunking task. Veenstra and Bosch [12] used memory based learning for chunk-
ing. Zhou et al. [13] proposed error driven HMM based chunk tagger with con-
text dependent lexicon. Rob Koeling [14] applied maximum entropy models for
chunking. Christer Johansson [15] proposed context sensitive maximum likeli-
hood approach for chunking task. Tong Zhang et al. [16] proposed generalized
winnow algorithm for text chunking. Recently Fei Sha and Pereira [17] used con-
ditional random fields for noun phrase chunking and achieved good performance.

Molina and Pla [18] proposed shallow parsing with specialized HMMs. Car-
reras et al. [19] used perceptrons for chunking task. Recently, Gondy et al. [20]
proposed a shallow parser based on closed-class words to capture relations in
biomedical text.

Taku Kudoh et al. [21] proposed SVMs for chunking. This system performed
the best in CoNLL-2000 chunking task and achieved an F-measure of 93.48%.
Van Halteren [22] proposed Weighted probability distribution voting algorithm
(WPDV) for chunking task. Tjong Kim Sang [23] proposed combination of sev-
eral memory based learning systems for chunking task.

Most of the parsers described in literature have used either only rule based
techniques or only machine learning techniques. Hand-crafting rules in the lin-
guistic approach can be very laborious and time consuming. Parsers tend to
produce a large number of possible parse outputs and in the absence of suitable
rating and ranking mechanisms, selecting the right parse can be very difficult.
Statistical learning systems, on the other hand, require large and representative
parsed corpora for training. .

Recently, there is an increasing interest on integrating shallow parsers with
deep parsing. Berthold Crysmann et al. [24] reported an implemented system
called WHITEBOARD which integrates different shallow components with a
HPSG based deep parsing system. Ronald M. Kaplan et. al. proposed a hybrid
architecture called XLE [25] for combining finite state machine with LFG gram-
mar. In XLE system, first the surface forms are run through the FST morphology
to produce the corresponding stems and tags. Stems and tags each have entries in
the LFG lexicon. Sub-lexical phrase structure rules produce syntactic nodes cov-
ering these stems and tags and standard grammar rules then build larger phrases.

3 UCSG Shallow Parsing Architecture

Purely linguistic approaches have not proved practicable for developing wide
coverage grammars and purely machine learning approaches are also impracti-
cable in many cases due to the non-availability of large enough parsed training
corpora. Only a judicious combination of the two approaches can perhaps lead
to wide coverage grammars and robust parsing systems. In the UCSG Shallow

UCSG Shallow Parser 159

Parsing Architecture, instead of looking for a grammar that can capture all and
only valid structures, simultaneous satisfaction of both the requirements hav-
ing proved very difficult in practice, we employ a Finite State Grammar that is
general enough to capture all valid word groups without necessarily restricting
to only those word groups which are appropriate in the context of a given sen-
tence, and a separate statistical component, encoded in HMMs (Hidden Markov
Model), to rate and rank the word groups so produced. Note that we are not
pruning, we are only rating and ranking the word groups produced. The aim is
to produce parse outputs in best first order, without compromising on the ability
to produce all possible parses. This system is thus more than a chunker - the
word groups produced are often bigger, disambiguated in context to some extent
(for example, VVG is disambiguated between a gerund, a present participle and
part of a present continuous verb group) and motivated by insights from deeper
parsing requirements. This work is part of a larger on-going effort. The UCSG
Shallow Parsing Architecture is depicted in Figure 1.

Fig. 1. UCSG Shallow Parsing Architecture

3.1 Finite State Parser

Unlike linguistic grammar formalisms and corresponding full parsers that at-
tempt to capture the full hierarchical and thematic structure within sentences,
partial parsing systems and chunkers only need to identify non-overlapping, non-
recursive word groups or chunks. Thus the power of Context Free Grammars
(also known generally as phrase structure rules in Linguistics) is not required
and the simpler Finite State Grammars are sufficient. Finite State Grammars
capture simple constraints such as linear precedence, optional items and rep-
etitions but not arbitrarily deep hierarchical nestings or general dependencies

160 B.K. Guntur and N.M. Kavi

across constituents. Finite State Grammars can be developed with relative ease
as compared to developing computational grammars for capturing full syntax.
Also word groups can be recognized using these Finite State Machines in linear
time [26].

The first module in the UCSG architecture is a Finite State Grammar-Parser.
The aim is to develop a general enough grammar that can capture all valid
word groups. Many additional word groups may be produced due to lexical
ambiguities. We do not aim to restrict or prune the various possibilities. Instead
we use a separate module to rate and rank these word groups.

The input to the system is one sentence at a time, either plain or POS-tagged.
In the former case, the dictionary is consulted to obtain all the possible tags for
each word. Our dictionary includes 128,000 root words, grammatical categories
in the Claws-5 tag-set format, and frequency of each word in each of the possible
categories. This dictionary has been developed over the last many years, cross
checked against several large corpora including the British National Corpus and
Reuters News Corpus. A coverage of 90 to 97 percent plus has been observed
on various corpora. Inflectional morphology is handled by the parser and words
still not analyzed are taken by default to be proper nouns. We give a running
example to illustrate the working of the system through various stages. The in-
put to the system is a sentence in plain text format: ’He was walking along a
quiet street when gunmen shot him several times in the head.’ After Dictionary
lookup, we have:

<PNPNOM>he <VBD>was <VVG>walking> <AVP_PRP>along <AT0>a
<VVB_AJ0_NN1_VVI>quiet <NN1>street <CJS_AVQ>when
<NN2>gunmen <VVN_VVD_NN1>shot <PNPACC>him
<DT0_PNP_AJ0>several <VVZ_NN2> <times> <PRP_AVP_AJ0>in
<AT0>the <VVB_AJ0_NN1_VVI>head

Note the lexical ambiguities. Sample output from the Finite State Parser is
given below. Chunks identified are given one per line, starting with the category
of the chunk, followed by the words along with the corresponding tags.

<vg> <VBD><was>
<vg> <VBD><was><VVG><walking>
<vg> <VBD><was><VVG><walking><AVP><along>
<vgs> <VVG><walking>
<vg> <VVB><quiet>
<ng> <VVG><walking>
<ng> <PRP><along><AT0><a><NN1><quiet>
<ng> <PRP><along><AT0><a><NN1><quiet><NN1><street>
<ng> <PRP><along><AT0><a><AJ0><quiet><NN1><street>
<ng> <AT0><a><NN1><quiet>
<ng> <AT0><a><AJ0><quiet><NN1><street>
<ng> <AT0><a><NN1><quiet><NN1><street>

UCSG Shallow Parser 161

<ng> <NN1><quiet>
<ng> <AJ0><quiet><NN1><street>
<ng> <NN1><quiet><NN1><street>
<ng> <NN1><street>
<ng> <VVG><walking><PRP><along><AT0><a>

<AJ0><quiet><NN1><street>
<ng> <VVG><walking><PRP><along><AT0><a>

<NN1><quiet><NN1><street>
<ng> <VVG><walking><PRP><along><AT0><a><NN1><quiet>
<ajg> <VVG><walking>
<ajg> <AJ0><quiet>
<part> <AVP><along>

3.2 HMM-Module

The second module is a set of Hidden Markov Models (HMM) used for rating
and ranking the word groups produced by the Finite State Grammar. A number
of word groups would have produced by the first module, the right ones and
possibly several additional ones as well. Rating and ranking helps us to prefer
the appropriate ones to the others.

One HMM model is built for each major category of word groups. In this
work we have used three HMM models, one for noun groups, one for verb groups
and one for all other kinds of word groups. Note that in UCSG, prepositional
groups are included under noun groups.

States in a HMM correspond to categories. Observation symbols correspond
to words. The HMM models λ = (π, A, B) are defined as follows:

– The number of states of the model N is the number of relevant categories.
– The number of observation symbols M is the number of words.
– The initial state probability πi = P{qi = i} 1 ≤ i ≤ N where qi is a category

(state) starting a particular word group
– State transition probability aij = P{qt+1 = j|qt = i} 1 ≤ i, j ≤ N} where qt

denotes the current category (state) and qt+1 denotes the next state.
– Observation or emission probability, bj(k) = P{ot = vk|qt = j} 1 ≤ j ≤ N ,

1 ≤ k ≤ M where vk denotes the kth word, and qt the current state.

The HMM parameters A, B and π can be obtained from a training corpus.
In case a manually checked and certified chunked corpus is available, these para-
meters can be estimated from such a training corpus. However, chunked/parsed
training corpora are difficult to get and we propose a bootstrapping technique
to estimate the HMM parameters when only a POS-tagged corpus is available.
In the latter case, we first pass the corpus through our Finite State module and
obtain the possible chunks. Taking these chunks to be equi-probable, we can
estimate the HMM parameters either using Baum-Welch algorithm or by simply
taking the ratios of frequency counts.

162 B.K. Guntur and N.M. Kavi

In the present work, 2,500,000 randomly selected sentences from the British
National Corpus [27] were chunked using our Finite State Grammar. It may
be noted that this corpus is POS tagged but not parsed/chunked. The π and
A matrix values were estimated from these chunks, taking all chunks as equi-
probable and the B matrix values were estimated from our dictionary which
includes the frequencies for every category for each word. Note that development
of the HMMs is a one-time off-line process. However, as we shall see later, the
HMM parameters can be further refined later by bootstrapping.

The HMMs are used only for rating and ranking the word groups already
obtained by the Finite State Grammar, not for obtaining the word groups per
se. We simply estimate the probability of each chunk in the HMM model for the
appropriate category:

P (O|λ) =
∑t

i=1 πi1bi1(O1)ai1,i2bi2(O2)ai2,i3 · · · ait−1,itbit(Ot)

The aim here is to obtain the highest ranks for the correct chunks and to push
down other chunks in the ranked order. Contrast this with the more common
idea of using of HMMs (say for POS tagging) before parsing. This would require
Viterbi search. Also, the HMMs we use in UCSG architecture are specific to
different categories of word groups and are local to the neighbourhood of word
groups, thereby imposing tighter constraints.

Chunks obtained by the Finite State Grammar can be partitioned into chunk-
groups such that chunks across chunk-groups are disjoint. Ranking is performed
within chunk-groups, keeping in view the category of the chunks as the example
below shows. Performance can be measured in terms of position of the correct
chunks in the ranked order. A sample from the running example is given in
Table 1 to show the rankings obtained for the various possible word groups.
It can be seen that the correct chunks tend to get ranked higher. Extensive
experimentation is going on to fine tune the HMMs so that good rankings can
be obtained reliably.

3.3 A* Search for Best First Search

It has proved difficult in practice to produce a single parse, or a very small
number of parses, and at the same time guarantee correctness of parsing. A
large number of possible parse outputs will also be difficult to use if the outputs
are not rated and ranked in some way. Our aim is to build parses that can
produce parse outputs in best-first order, without compromising on the ability
to produce all grammatically valid parses, even when the input sentences are not
POS tagged. Depending upon the application, we may either produce all possible
parses in ranked order or stop further generation using a suitable thresholding
mechanism. In UCSG Architecture, we posit a A* best first search algorithm
to select the chunks to produce the best chunk sequence for a given sentence,
taking advantage of the ratings provided by the HMM module. Searching involves
selecting chunks in best first order to cover the given sentence without overlaps
or gaps.

UCSG Shallow Parser 163

Table 1. Ranking by HMMs

<vg> <VBD><was><VVG><walking> 1
<vg> <VBD><was><VVG><walking><AVP><along> 2
<vg> <VBD><was> 3
<vgs> <VVG><walking> 4
<ng> <VVG><walking><PRP><along><AT0><a>
<AJ0><quiet><NN1><street> 1
<ng> <VVG><walking><PRP><along><AT0><a>
<NN1><quiet><NN1><street> 2
<ng> <PRP><along><AT0><a><AJ0><quiet><NN1><street> 3
<ng> <VVG><walking><PRP><along><AT0><a><NN1><quiet> 4
<ng> <PRP><along><AT0><a><NN1><quiet><NN1><street> 5
<ng> <AT0><a><AJ0><quiet><NN1><street> 6
<ng> <PRP><along><AT0><a><NN1><quiet> 7
<ng> <AT0><a><NN1><quiet><NN1><street> 8
<ng> <AT0><a><NN1><quiet> 9
<ng> <AJ0><quiet><NN1><street> 10
<ng> <NN1><quiet><NN1><street> 11
<ng> <NN1><street> 12
<ng> <VVG><walking> 13
<ng> <NN1><quiet> 14

The rating and ranking of the word groups by HMMs is local to the neigh-
bourhood of the word groups, that is, within chunk-groups. Note that while
sequences of words within chunks have been considered by the Finite State
Parser and HMMs, the sequences of chunks themselves have not been taken
into account. Therefore, simply selecting the best rated chunks within each of
the chunk-groups will not necessarily form the best parse for the whole sentence.

The A* Best First Search Strategy combines two factors, namely, effort al-
ready spent in pursuing the current path (g), and, estimated effort required to
reach the goal state (h). A single combined measure of goodness (f) is computed
for each node in the search tree and the best node is selected for subsequent
expansion: f(n) = g(n) + h(n). The effort already spent is obtained from the
probabilities given by the HMM module. The distance to the goal node is esti-
mated in terms of the words yet to be covered in the given sentence. The top
parse for our running example is given below:

<ng>[<PNPNOM><he>]</ng>
<vg>[<VBD><was><VVG><walking>]</vg>
<ng>[<PRP><along><AT0><a><AJ0><quiet><NN1><street>]</ng>
_[<CJS><when>]
<ng>[<NN2><gunmen>]</ng>
<vg>[<VVD><shot>]</vg>
<ng>[<PNPACC><him>]</ng>
<ng>[<DT0><several><NN2><times><PRP><in>

<AT0><the><NN1><head>]</ng>

164 B.K. Guntur and N.M. Kavi

One of the main ideas behind the UCSG architecture is bootstrapping. The
final parse outputs produced after A* search will hopefully be more or less in
best first order. We can therefore take the top parse, or the top few parses to
be correct and re-estimate the HMM parameters using this refined data. We can
also manually check the parse outputs and build a dependable partially parsed
corpus. We have so far built a manually checked parsed corpus of 2000 plus
sentences. Extensive experimentation is on to re-estimate the HMM parameters
as also for fine tuning A* search itself.

4 Experiments and Results

The performance of the Finite State module has been evaluated on the Susanne
Parsed Corpus as well as CoNLL 2000 Test data set. Since the aim of this module
is only completeness, performance is given in terms of Recall.

The Susanne corpus [28] is a manually parsed corpus containing about 130,000
words in more than 6500 sentences. Some preprocessing was necessary. Ambi-
guities with apostrophes have been resolved. Spelling errors mentioned in the
Susanne documentation have been corrected. Since the structure of the parse
output in the Susanne corpus differs somewhat from that of UCSG, suitable
mapping schemes had to be developed and validated [29]. Plain text sentences
were extracted and given as input to the UCSG shallow parser. Results are given
below in Table 2 for Noun, Verb, Adjective and Adverb groups.

Table 2. Performance of the Finite State Parser on Susanne Corpus

Word Group Type No. of Groups in Test Data No. of Groups Recognized % Recall
Noun Group 34952 30642 87.67
Verb Group 18134 17975 99.12
Adjective Group 2355 1794 76.18
Adverb Group 5512 5156 93.54
Overall 60953 55567 91.16

Overall, 91.16% of phrases in the Susanne corpus have been correctly identi-
fied. 99.12% of all the verb groups could be correctly identified. Failures in the
case of verb groups are limited to complex cases such as “have never, or not for
a long time, had”.

The CoNLL 2000 test data set consists section 20 of the Wall Street Journal
corpus (WSJ) and includes 47377 words and 23852 chunks. In the current evalua-
tion, LST chunks (list items) have been excluded. Also, in the UCSG framework,
there are no separate PPs - PPs are included in noun groups. Table 3 gives the
performance.

There are a few minor differences in the way chunks are defined in the
CoNLL 2000 chunking task and UCSG. Punctuation marks are removed by
a pre-processor and handled separately elsewhere in UCSG. Currency symbols

UCSG Shallow Parser 165

Table 3. Evaluation of Finite State Parser on CoNLL 2000 Test Data Set

CoNLL Chunk Type UCSG Terms Chunks in Test Data Chunks Recognized % Recall
NP ng 12422 10588 85.24
VP vg,infg 4658 3786 81.28
ADVP avg 866 698 80.60
ADJP ajg 438 398 90.87
SBAR sub 535 507 94.77
PRT part 106 105 99.06
CONJP sub 9 9 100.00
INTJ intg 2 1 50.00
Total 19036 16092 84.53

Table 4. Evaluation of the Finite State Parser on CoNLL Data Set after mapping

CoNLL Chunk Type Chunks in Test Data Chunks Recognized % Recall
NP,PP 17233 16158 93.76
VP 4658 4475 96.07

such as $ and # are considered part of numbers in UCSG while they become
separate words in CoNLL. CoNLL splits chunks across the apostrophies in gen-
itives as in Rockwell International Corporation’s tulsa unit while UCSG does
not. To-infinitives as in continue to plummet are recognized separately in UCSG
while they may form part of a VP in CoNLL. Also, in keeping the UCSG phi-
losophy, PPs are not recognized separately in UCSG, they are included in noun
groups. In order to get a better feel for the true performance of the UCSG shal-
low parser, the above differences were discounted for and performance checked
again. The results are given in Table 4 for NP, PP and VPs. There is no change
in the performance for other groups. Overall, 22351 out of 23847 chunks have
been correctly identified, giving a Recall of 93.73%.

Initial results with ranking by HMMs has shown promise and extensive work
on bootstrapping to refine the HMM parameters is currently under way. The
overall system is also being evaluated in terms of the percentage of correct chunks
found in the top ranked parse as also in terms of the ranking of the fully correct
parse in the final output.

5 Conclusions

In this paper we have described an architecture for partial parsing called the
UCSG shallow parsing architecture. UCSG combines linguistic constraints ex-
pressed in the form of finite state grammars with statistical rating using HMMs
built from a POS-tagged corpus and a best first search strategy for global op-
timization. With appropriate bootstrapping, it would hopefully be possible to
develop wide coverage and robust partial parsing systems without the need for
parsed corpora which are not easily available in many cases. The UCSG Shallow
Parsing Architecture is also computationally efficient. Since large scale plain text

166 B.K. Guntur and N.M. Kavi

and POS-tagged corpora are becoming available in Indian languages, this ap-
proach seems to hold promise for developing parsing systems for these languages
as well.

The complete system including all the modules in the architecture has been
implemented in Perl under Linux. On the Susanne parsed corpus, an overall
Recall of 91.16% has been obtained and on the CoNLL 2000 chunking task
test data set, a Recall of 93.73% has been obtained for the Finite State Parser.
Further work is under way for refining the system through bootstrapping.

References

1. Doran, C., Egedi, D., Hockey, B.A., Srinivas, B., Zaidel, M.: XTAG system –
a wide coverage grammar for english. In: Proceedings of the 15th. International
Conference on Computational Linguistics (COLING 94). Volume II., Kyoto, Japan
(1994) 922–928

2. Abney, S.P.: Parsing by Chunks. Principle-based parsing: Computation and psy-
cholinguistics edn. Kluwer (1991)

3. Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the conll-2000 shared task:
Chunking. In Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E., eds.:
Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000) 127–132

4. Murthy, K.N.: Universal Clause Structure Grammar. PhD Thesis, University of
Hyderabad (1995)

5. Murthy, K.N.: Universal Clause Structure Grammar and the Syntax of Relatively
Free Word Order Languages. South Asian Language Review VII (1997)

6. Abney, S.: Partial parsing via finite-state cascades. In: Workshop on Robust
Parsing, 8th European Summer School in Logic, Language and Information, Prag
(1996) 8–15

7. Grefenstette, G.: Light parsing as finite state filtering. In: Workshop on Extended
finite state models of language, Budapest, Hungary (1996)

8. Roche, E.: Parsing with finite state transducers. Finite–state language processing
edn. MIT Press (1997)

9. Vilain, M., Day, D.: Phrase parsing with rule sequence processors: an application to
the shared conll task. In Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang,
E., eds.: Proc. of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000) 160–162

10. Dejean, H.: Learning rules and their exceptions. In: Journal of Machine Learning
Research, volume 2. (2002) 669–693

11. Osborne, M.: Shallow parsing as part-of-speech tagging. In Cardie, C., Daelemans,
W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings of CoNLL-2000 and LLL-
2000, Lisbon, Portugal (2000) 145–147

12. Veenstra, J., van den Bosch, A.: Single-classifier memory-based phrase chunking.
In Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings
of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000) 157–159

13. Zhou, G., Su, J., Tey, T.: Hybrid text chunking. In Cardie, C., Daelemans, W.,
Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings of CoNLL-2000 and LLL-2000,
Lisbon, Portugal (2000) 163–166

14. Koeling, R.: Chunking with maximum entropy models. In Cardie, C., Daelemans,
W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings of CoNLL-2000 and LLL-
2000, Lisbon, Portugal (2000) 139–141

UCSG Shallow Parser 167

15. Johansson, C.: A context sensitive maximum likelihood approach to chunking. In
Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings
of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000) 136–138

16. Zhang, T., Damerau, F., Johnson, D.: Text chunking based on a generalization of
winnow. In: Journal of Machine Learning Research, volume 2. (2002) 615–637

17. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. Technical
Report CIS TR MS-CIS-02-35, University of Pennsylvania (2003)

18. Molina, A., Pla, F.: Shallow parsing using specialized hmms. In: Journal of Machine
Learning Research, volume 2. (2002) 595–613

19. Carreras, X., Marquez, L.: Phrase recognition by filtering and ranking with per-
ceptrons. In: Proceedings of the International Conference on Recent Advances in
Natural Language Processing, RANLP-2003, Borovets, Bulgaria (2003) 127–132

20. Gondy, L., Hsinchun, C., Jesse, M.: A shallow parser based on closed-class words
to capture relations in biomedical text. In: Journal of Biomedical Informatics 36.
(2003) 145–158

21. Kudoh, T., Matsumoto, Y.: Use of support vector learning for chunk identification.
In Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings
of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000) 142–144

22. van Halteren, H.: Chunking with wpdv models. In Cardie, C., Daelemans, W.,
Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings of CoNLL-2000 and LLL-2000,
Lisbon, Portugal (2000) 154–156

23. Erik F. Tjong Kim Sang: Memory-based shallow parsing. In: Journal of Machine
Learning Research, volume 2. (2002) 559–594

24. Berthold Crysmann et al.: An integrated archictecture for shallow and deep
processing systems. In: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL), University of Pennsylvania, Philadelphia
(2002)

25. Kaplan, R.M., III, J.T.M., King, T.H., Crouch, R.: Integrating finite-state tech-
nology with deep lfg grammars1. In: Proceedings of the Workshop on Combining
Shallow and Deep Processing for NLP(ESSLLI). (2004)

26. J. Hopcroft and J. Ullman: Introduction to automata theory, languages, and com-
putation. Addison-Wesley (1979)

27. Burnard, L. In: The users reference guide for the British National Corpus. Oxford
University Computing Services, Oxford (1995)

28. Sampson, G.: The susanne treebank: Release 5, Univ.of Sussex, England (2000)
29. Nagesh, K.: Towards a robust shallow parser. Masters thesis, Department of

Computer and Information Sciences, University of Hyderabad (2004)

	Introduction
	A Brief Survey of Shallow Parsing Systems
	 UCSG Shallow Parsing Architecture
	Finite State Parser
	HMM-Module
	A* Search for Best First Search

	Experiments and Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

