Computer Science and Informatics Vol. 27 No.1, March 1997

Universal Clause Structure Grammar

K. Narayana Murthy* & A.Sivasankara Reddy*

This paper is about a new grammatical formalism which we call Universal Clause Structure Grammar (UCSG).
In this paper we present the essence of UCSG with emphasis on efficient parsing of both positional languages
like English and relatively free word order languages such as the Indian languages. Grammars can be
viewed as sets of constraints on the structure of sentences. There are constraints on the linear position of
constituents, hierarchical nesting of constituents one inside the other and functional dependencies between
different constituents in a sentence. In UCSG we find that these three primary kinds of structure inherent in
human languages namely, linear, hierarchical and functional structures, lend themselves naturally for analysis
by three independent modules. UCSG proposes three levels of representation called L-Structure, H-Structure
and F-Structure along with the corresponding components of the grammar to map from one level to the
other. In UCSG we divide and conquer. The division of labour into these three separate modules, especially
the introduction of an independent H-Structure is the highlight of UCSG. UCSG claims that strong constraints
exist on the sequences of verbs and certain clause boundary markers, and that the hierarchical structure of
clauses in a sentence should be analyzed by exploiting these constraints. UCSG not only shows that the clause
structure of a sentence can be determined without and before analyzing the predicate-argument structure of
individual clauses, it also demonstrates the following three major advantages of doing so. Firstly, parsing in
UCSG is very efficient.

Secondly it provides a uniform method of dealing with configurational languages like English and relatively
free word order languages like Indian languages and even languages like Dutch that show cross serial
dependencies. Finally, it disparages the notion of long distance dependencies. Brief comparisons with
other grammar formalisms are also given.

1. Introduction:

The grammar of a language is a formal specification
of the valid structures in that language. The aim of
a syntactic analyzer, also called a (syntactic) parser,
is to apply the grammar to produce a structural
description of a given sentence. Producing a
structural description of the given sentence helps
in understanding the meaning of the sentence and
facilitates Natural Language Processing (NLP)
applications such as machine translation. The tasks
for a syntactic analyzer include identifying the
various constituents in the sentence, determining
their linear and hierarchical relationships and
assigning functional roles to these constituents.

Grammars and the processes of parsing and
generating are closely tied up. A grammar formalism

is a meta language that specifies the nature of
grammars, parsers and structural descriptions.
Different grammar formalisms can be compared in
terms of the efficiency of parsing or generation in
those grammar formalisms. More powerful
grammars provide higher flexibility in specifying the
grammatical structure of languages but they also
require more computational resources for parsing
or generation and in this sense less efficient. The
natural goal in NLP is, therefore, to look for the least
powerful and hence the most efficient grammar that
is sufficient to deal with the structure of natural
languages.

There is a notion of a Universal Grammar - a
grammar that aims to capture the underlying
commonalities among all human languages and
attempts to explain human language behaviour in

Keywords: Grammar Formalism, Universal Grammar,

Parsing terms of such a grammar [3,4,7]. While Chomsky

views Universal Grammar as an in-born biological
endowment, others like Greenberg view universality

* Department of Computer and Information Sciences,
University of Hyderabad, Hyderabad 500 046 INDIA

26



Computer Science and Informatics

K. Narayana Murthy, et al

1)

purely in terms of underlying commonalities
between different languages despite the
idiosyncrasies of individual languages. We take this
latter view - we make no cognitive claims. From a
practical point of view, the notion of a Universal
Grammar is attractive because it enables one to build
universal parsers and generators that need only
relatively minor changes for adapting them into
individual languttages. This would require much less
effort compared to building separate parsers and
generators for individual languages. Common
parsers and generators also imply that the structural
descriptions that a parser produces or a generator
accepts will be uniform across languages and hence
automatic translation from one language to another
would be greatly facilitated. In particular, here we
are interested in' grammar formalisms that can
efficiently handle both positional languages like
English and relatively free word order languages
like the Indian languages.

Aim and Scope:

Our aim here is to develop a computationally viable
grammar formalism that leads to efficient parsing
for both positional languages and relatively free
word order languages. We develop a new grammar
formalism which we call Universal Clause Structure
Grammar (UCSG) and show how efficient parsers
can be built within this grammar formalism.

In the next Section we give the necessary
background for UCSG. We discuss basic concepts
including the notions of phrases, clauses and linear,
hierarchical and functional structure. We will then
see how other grammar formalisms have dealt with
these kinds of structure and what kinds of problems
they face. In the light of this discussion, we present
the UCSG grammar system in some detail. We will
see how UCSG deals with relatively free word order
languages and with long distance dependencies. We
will also show that efficient parsers can be built for
UCSG. We conclude with a detailed example.

Background:

We use a (simple) sentence to describe a predication-
an action or the state of something. Typically, we
use verbs to specify the action or the state itself and
nouns to specify the various participants in the
predication. Thus the English sentence

I bought a computer

can be ascribed the predicate-argument structure:
buy (I,computer)

with the convention that the first argument of the

predicate ‘buy’ specifies who bought and the second
argument specifies what is bought. Predicate-
argument structure is the heart of structural
descriptions.

2.1 Clauses and Hierarchical Structure:

2)

To express more complex ideas we may combine
several predications into a single sentence. Complex
sentences may involve several inter-related clauses.
Clauses may be nested one inside the other in several
ways and several levels deep. Clauses can function
as subjects and complements of other clauses. Also,
the various participants in a predication may be
further modified by relative clauses. Sentences in
natural languages therefore exhibit a hierarchical
structure of clauses. This notion of hierarchical
structure is crucial for UCSG and UCSG differs from
other grammar formalisms mainly in terms of how
it captures this hierarchical structure in sentences.

We look at a clause as a linguistic unit that
corresponds to one predication. A clause includes
one verb group that specifies the predicate, all the
arguments of this predicate as also all the non-
arguments (modifiers of place, time, etc) that go
along with the predicate. Consider

The computer which I bought from the famous
company is defective.

Here the main or the matrix clause is “The computer
is defective’. One of the arguments in this clause,
namely, ‘the computer’ is further being modified by
the relative clause ‘which I bought from the famous
company’.

Here ‘The computer’ is an argument at the matrix
clause level but ‘the famous company’ is not. In order
to understand the structure of the sentence properly,
it is essential for a parser to be able to identify the
clauses, to determine the clause boundaries and to
find out inter-clausal relationships.

2.2 Functional Structure:

Functional structure of a sentence relates to the
predicate-argument structure of the various clauses
in a sentence. It indicates the assignment of
functional roles to the various participants in each
of the predications being made in the sentence. The
primary claim of a functional structure is that there
are only a small number of universal roles into which
we can analyze any sentence from any human
language - functional roles themselves are language
independent. Small number of roles implies a high
level of abstraction. Only one assignment can be
made to a role, each role that the subcategorization
frame demands must be filled and every constituent
in the given sentence plays one functional role except

27



Computer Science and Informatics

Vol. 27 No.1, March 1997

for specific cases where sharing of roles is permitted
according to well specified rules of grammar. These
are all the well known tenets of the so called ‘case
grammars’. Different case systems use different sets
of case roles. Panini’s karaka roles are perhaps the
oldest. Within western linguistics, the notion of
surface and deep cases were first clearly laid out by
Fillmore [5,6] and since then roles such as agent
and theme have become standard in linguistic
theories.

2.3 Word Groups and Linear Structure:

3)

Arguments need not be single nouns, they can be
groups of words that together have the force of a
noun. It is therefore useful to introduce the concept
of a phrase - a group of words that plays, as a whole,
one role in the sentence. In the sentence

The new chip had become the standard

the phrase ‘the new chip’ is a single argument. This
phrase as a whole has a role in the predicate-
argument structure of the sentence and its parts
cannot play any role on their own. Every phrase has
a ‘head’ and a phrase takes the name of its head.
Every noun phrase is headed by a noun or in fact,
any other word that has the force of, or that can
stand for, a noun, such as a pronoun. Parts of a
phrase may or may not have independent meaning.
The word ‘the’ in ‘the new chip’, for example, may
not have any independent meaning although it may
contribute to the overall meaning of the phrase. A
phrase as a whole can usually be ascribed some
meaning, can be given out as a fragmental reply to
a question and usually translates as a unit to other
languages.

Likewise, the group of words ‘had become’ has a
meaning as a whole — the meaning of ‘had become’
is not merely a composition of the meanings of the
words ‘had’ and ‘become’, and can be translated as a
unit into some other language. Consequently, we
should call ‘had become’ as a verb phrase — it is a
phrase headed by a verb. By the same token ‘keeps
coming’ and ‘used to come’ are single verb phrases
since there is no sense of ‘keeping’ or ‘using’ in these
phrases.

Unfortunately, it has become traditional to divide a
sentence into a ‘subject’ and a ‘predicate’ and refer
to the entire ‘predicate’ of the sentence (including
the verb group and the ‘objects’) as the verb phrase
(vp). To avoid confusion, we will use the term ‘verb
group’, rather than the term ‘verb phrase’. For the
sake of uniformity, we will also refer to other phrases
like noun phrases as noun groups and so on.

Phrase structure rules capture repetition through
recursive rules. Such rules and the corresponding
tree structures give us an impression that we are
capturing hierarchical relations also. This is in fact
quite misleading. Noun phrases with multiple
modifiers do exhibit hierarchical structure in terms
of what modifies what but determining the correct
modifier-modified hierarchy is a difficult problem
that relies heavily on semantics as can be seen from
examples like ‘glass epoxy printed circuit board
manufacturing unit’. It is therefore reasonable to
expect syntax to only list all the modifiers preserving
linear order, without pretending to have analyzed
the hierarchical structure. Recursion in these phrase
structure rules is to be interpreted only as an
implementation of iteration - permitting more than
one modifier. Word groups involve constraints on
linear precedence, optionality and repetition but no
hierarchical nesting. See [13] for more on this issue.
On the other hand, the linear order of phrases within
a clause may or may not be significant. English
imposes much stricter ordering of the arguments in
a predication than do the relatively free word order
languages like Telugu.

The complete structural description of a sentence
should therefore depict the predicate-argument
structure of each of the clauses in the sentence along
with the inter-clause relationships. It should also
show the linear position of the constituents in the
sentence wherever significant. We will now briefly
discuss how other grammar formalisms have tried
to capture linear, hierarchical and functional
structure in sentences. We shall discuss some of the
problems with these approaches. This discussion will
help us to appreciate the merits of the UCSG
approach to syntactic analysis.

Capturing Linear and Hierarchical

structure :

Most grammar formalisms handle linear and
hierarchical structure together using a component
equivalent to Context Free Grammars (CFG).
Functional structure is usually handled by some sort
of augmenting or enhancing the CFG component.
As we shall see later, UCSG differs from this
approach.

Most grammar formalisms, including Augmented
Transition Networks (ATN) [17], Definite Clause
Grammar (DCG) [15], Lexical Functional Grammar
(LFG) [10], Tree Adjoining Grammar (TAG) [9], the
older Transformational Grammar and the more
recent linguistic models like Government and
Binding (GB) [3,4], incorporate a component that

28



Computer Science and Informatics

K. Narayana Murthy, et al

deals with the linear and hierarchical relationships
in sentences. ATNs are obtained by augmenting
Recursive Transition Networks (RTN) which are
equivalent to Context Free Grammars. LFG uses
phrase structure rules to capture the linear and
hierarchical relationships which are depicted in its
C-Structure. TAG uses initial and auxiliary trees
which depict linear as well as hierarchical
relationships. Linguistic models like GB incorporate
a base component that uses phrase structure rules
to capture linear and hierarchical relationships. In
all these grammar formalisms the component that
deals with linear and hierarchical relationships uses
grammars of the CFG power. Context Free
Grammars are well understood in computer science
and efficient parsing techniques exist for parsing
with CFGs. However, inappropriate use of CFGs can
lead to both theoretical and practical problems. We
now turn to a detailed discussion of the merits and
demerits of CFGs so that we can clearly see where
we should use them and where we should not.

Dependencies among constituents in a sentence:

Languages exhibit certain dependencies among the
various constituents in a sentence including
grammatical agreement and selectional restrictions.
Phrase structure rules are not good at capturing
dependencies among constituents. CFGs relate to
words through grammatical categories. The category
of a word is, and should be, based purely on its own
intrinsic properties. On the other hand, a
grammatical relation between two independent
words is an intrinsic property of neither of these
words. One can handle these dependencies by
dividing the categories - for example nouns and verbs
can be divided into singular nouns, plural nouns,
singular verbs and plural verbs to deal with number
agreement between a noun phrase and the verb. But
this is unintuitive and computationally highly
inefficient. CFGs cannot deal effectively with any
kind of functional dependency.

Relatively Free Word Order Languages:

There are a number of human languages where
there is considerable, though not unlimited scope
for changing the order of phrases in a sentence
without significantly altering the functional
structure of the sentence. Indian languages are
examples of this. Phrase structure rules, have no
way of ‘ignoring’ this unwanted linear order
constraints, since the right hand side of a phrase
structure rule not only specifies the constituents but
also their linear order. We are again forced to
multiply the rules writing one rule for each possible
order of the constituent phrases. This is a case where

3.

4

5)

6)

CFGs impose linear structure where there is none.
This makes all the western grammar formalisms
unsuitable for parsing relatively free word order
languages. On the other hand, while the Paninian
Grammar (PG) [1] has been especially developed for
Indian languages, its applicability to positional
languages has not yet been fully established.
Moreover, PG suffers from many of the same
problems that western grammar formalisms suffer
from and it has been argued that Paninian grammar,
even if applied to positional languages like English,
will lead to very inefficient parsing and in fact it is
less efficient than possible even for Indian languages
[13].

Long Distance Dependencies and Movement:
Consider the sentence and the question that follows:

That the new computer which I had purchased from
the famous company had a hardware bug has been
troubling me

Whom has the fact that the new computer had a
hardware bug been troubling?

In interpreting this question, we may say that the
‘wh’ phrase ‘whom’ has to be ‘moved’ to its proper
position, which is to the right of ‘troubling’. Since
we can interpose any number of clauses such as the
relative clause in 4), we call this kind of dependency
as a ‘long distance dependency’. Since CFGs cannot
deal effectively with any kind of dependencies among
constituents, handling long distance dependencies
is also problematic. All the problems of long distance
dependencies are simply a consequence of not
making a clear distinction between clauses and
phrases and trying to handle both using a monolithic
set of phrase structure rules.

Cross Serial Dependencies:

CFGs can handle constituents that come linearly one
after the other as well as constituents that are
properly nested one inside the other. By proper
nesting we mean that a nested constituent must end
before the outer constituent closes. There are
languages such as Dutch, however, where we come
across an infinite set of grammatically correct
sentences with cross serial nesting. Let us look at
some examples from Dutch, taken from [2].

dat Jan de kinderen zag zwemmen
that Jan the children see-past swim-inf

L

‘...that Jan saw the children swim’

29



Computer Science and Informatics

Vol. 27 No.1, March 1997

7

...dat Jan Piet Marie de kinderen zag helpen laten zwemmen
that Jan Piet Marie the children see-past help-inf make-inf swim-inf

.

‘...that Jan saw Piet help Marie make the children swim’

There are restrictions on cross serial nestings in
Dutch [2], the most important of which is that only
a verb that is subcategorized for both a NP and an
infinitival complement can be inserted in this cross
serial fashion. Bresnan et al [2] have shown that it
is possible to get a CFG that sufficient to handle
Dutch in terms of its weak generative capacity but
they have also shown that Dutch is not strongly
context free. The LFG solution to this problem is
also given in [2]. TAG also handles cross serial
dependencies but is more powerful and hence less
efficient than CFGs [9].

Unbounded Branching:

CFGs capture repetition through recursion. There
are situations where what we want is mere
repetition and not recursion. For example, items in
conjunction should all be at the same level. A
sequence of ‘a’s can only be captured using recursive
rules such as A -> a A or A -> A a leading to
imposition of non-existent hierarchical structure.
Otherwise we will have to use an infinite number of
rules such as A -> a, A -> a a and so on.

In summary, we must use CFGs if and only if both
linear and hierarchical structure are significant and
there is no functional dependency. If there is no
hierarchical structure, we may not even need the
power of CFGs and if there is no linear structures,
CFGs are no good. Most grammar formalisms make
no distinction between phrases and clauses and
employ a monolithic set of CFG rules or equivalent
to capture both linear and hierarchical structure.
This confusion between linear and hierarchical
structure makes the western grammar formalisms
unsuitable for handling relatively free word order
languages and also leads to problems of long distance
dependencies. As we have seen above, phrases or
word groups involve only linear structure and no
hierarchical structure. Most grammar formalisms
handle linear structure also using CFG power and
are thus much less efficient than can be.

4. Capturing Functional Structure :

Determination of functional structure involves
assignment of roles to the various constituents in
the sentence. This assignment is governed by the
subcategorization frames of the verbs including the
selectional restrictions. Verbs have their
expectations, also called ‘Akanksha’ in the
traditional Indian grammars. The constituents that
fill the required roles must possess the necessary
qualities. This is called ‘Yogyata’. Additional
information for role assignment comes from the
prepositions or the post positional markers,
morphological inflections and the linear order of
constituents in the sentence.

Various clauses in a sentence are inter-related and
clauses are not completely independent of one
another. There can be, for example, shared
constituents. Nevertheless, functional structure is
essentially local to the individual clauses. Each
clause has its own verb group, each verb has its own
expectations and only the noun groups that are part
of the particular clause can take on the various roles.
This is simply as consequence of the fact that each
clause corresponds to one predication. However,
most grammar formalisms attempt to analyze the
functional structure of the sentence as a whole. This
makes these grammar formalisms very inefficient.

ATN builds a functional structure as a side effect of
the ‘actions’ associated with the arcs. LFG builds a
functional structure by unifying and solving the
functional description equations that originate from
the functional specifications associated with the
right hand side symbols of the phrase structure rules
and from the lexical entries. DCG is similar - it uses
unification of feature structures. TAG claims that
the functional structure can be simply read off from
the derivation trees. Case grammars and the
Paninian grammars view the task of producing a
functional description as an assignment problem -
assigning functional roles to various constituents
subject to constraints specified above. In all these
grammar formalisms, functional structure of the
entire sentence is analyzed at one go. All these
grammar formalisms fail to recognize the
fundamental fact that functional structure is
essentially a clause level phenomenon, not a
sentence level phenomenon.

In summary, all these grammar formalisms are
much less efficient than possible and none of them
is equally well suited for handling both positional
and relatively free word order languages. Much more
efficient and uniform parsing is possible if the task
of syntactic analysis is appropriately divided and

30



Computer Science and Informatics

K. Narayana Murthy, et al

the right kind of grammar is employed to handle
each of the modules. With these things in mind, we
can now look at the UCSG grammar formalism in
detail.

The Universal Clause Structure

Grammar:

In UCSG we divide and conquer. By appropriately
dividing the task of syntactic analysis into subtasks,
we get to see where exactly relatively free word order
languages differ from positional languages and what
is really common between the two classes. We can
also apply the least powerful kind of grammar for
each subtask leading to highly efficient parsing on
the whole. We find that the three primary kinds of
structure inherent in human languages namely,
linear, hierarchicil and functional structure, lend
themselves naturally for analysis by three
independent modules. UCSG postulates three levels
of syntactic analysis - linear analysis, hierarchical
analysis and functional analysis. Correspondingly,
there are three levels of syntactic representation
termed L-Structure, H-Structure and F-Structure.
While other grammar formalisms also tackle linear,
hierarchical and functional structure in some way

or the other, the division of labour into three separate
modules, especially the introduction of an
independent H level is the highlight of the UCSG
grammar formalism.

UCSG recognizes that word groups act as atomic
units of structure at both the hierarchical and
functional structure level. Hence word groups are
obtained first during the linear analysis phase. Then
the hierarchical structure of clauses is determined.
UCSG shows that hierarchical analysis of clauses
in a sentence can be done without and before
applying the functional structure constraints such
as agreement, subcategorization frame and
selectional restrictions. This approach makes it
possible to efficiently and uniformly parse both
positional and relatively free word order languages.
Having obtained the hierarchical structure of clauses
in the given sentence, functional structure analysis
is done clause by clause making the parsing
mechanism highly efficient on the whole. The block
diagram below depicts the overall structure of
UCSG. We will now discuss the details of these
modules with emphasis on the hierarchical structure
level, the most crucial aspect of UCSG.

Sentence

L Grammar

Linear Structure Analyzer

H Grammar

Initialized|Chart

Hierarchical Structure Analyzer

L-Structure

F Grammar

Hierarchical Structure Analyzer

H-Structure

F-Structure

31



Computer Science and Informatics

Vol. 27 No.1, March 1997

5.1 The L-Structure:

The linear structure analyzer takes a sentence as
input and produces its L-Structure. The main task
of the linear structure analyzer is to identify all
potential word groups in the given sentence. The
linear structure analyzer obtains words, looks up
the lexicon and carries out morphological analysis
where required. It then identifies all potential verb
groups, noun,groups, prepositional groups, adjective
groups, adverb groups etc. We can obtain all
potential word groups in a sentence in a single left
to right scan of the sentence and in linear time.
Hence the name linear structure. See [13] for more
details.

5.2 The H-Structure:

8

A general pringiple that is valid across all human
languages is that in a sentence the arguments of a
predicate must appear close to that predicate, only
the notion of ‘close’ varies slightly from language to
language. In English there are restrictions on the
relative positions of the various arguments - the
subject comes before the verb, the objects follow the
verb, etc. In Telugu, the arguments can come in any
order but all of them would come before the verb.
As an important corollary of this principle, the roles
of a clause, in general, do not cross the clause
boundaries. One exception to this is the limited cross
serial dependencies in Dutch. Consequently,
knowing the structure of clauses and clause
boundaries would greatly facilitate assignment of
functional roles because functional structure
analysis can then be done essentially one clause at
a time leading to very efficient parsing.

The important question, therefore, is whether the
clause structure in a sentence can be determined
before functional structure is analyzed. It is true that
the clause boundaries are partly determined by
factors like the subcategorization frames, selectional
restrictions and linear positions of the constituents
in the sentence - factors which are really to do with
the functional structure analysis. For example in
the sentence

If you dislike personal computers take the
workstation instead

‘personal computers’ cannot be, even syntactically,
the subject of ‘take’ because ‘dislike’ requires an
object and in English objects must follow the
corresponding verb. The subcategorization frame
requirements dictate this.

UCSG claims that despite this obvious dependence
on predicate-argument relations, it is possible to find
out the hierarchical structure of clause in a sentence,

albeit partially, before and without considering any
of the arguments or modifiers. UCSG shows that
the hierarchical structure of the clauses can be
efficiently determined by looking at only a few
constituents in the given sentence. It also show that
for each clause one of its boundaries can be fully
determined and the other boundary can be bounded
between two limiting positions. Having partially
analyzed the hierarchical structure of the clauses,
we can localize our search to the individual clauses
for the assignment of functional roles to the
arguments and modifiers.

By definition, every clause has one verb group in it
and this must definitely be part of that clause. How
do we determine which other constituents belong to
this clause? There is an important observation that
leads to the solution of this problem: One of the
boundaries of every clause in a sentence is overtly
marked by certain kinds of words or morphemes
called sentinels. In English, for example, relative
clauses begin with relative words like ‘who’, ‘which’
and ‘that’. We will consider the beginning and the
end of a complete sentence also as sentinels since
they also mark clause boundaries. Sentinels may
mark either the clause beginning or the clause
ending, parametrically varying from language to
language. In English, the end of the matrix clause
and the start of other clauses are well marked by
sentinels. In the sentence 8) above, the matrix clause
ends at the sentence end and the other clause begins
at the word ‘if.

Determination of the other boundaries of these
clauses depends on the predicate-argument relations
and hence cannot be done without using these
constraints. However we can place limits for these
undetermined boundaries also without considering
any of the functional structure constraints. Since
the verb group must definitely be part of the clause,
the matrix clause has to begin somewhere before
‘take’ and the other clause can only end somewhere
after ‘dislike’. Thus In the above example, we can
say for sure that ‘you’ can only take on a role of the
‘dislike’ predicate and ‘the workstation’ can only take
on a role of the ‘take’ predicate. Thus even this
partial knowledge of the clause structure is very
useful in itself in terms of reducing the possibilities
for roles assignment.

There are very strong constraints on the sequences
of verb groups and sentinels. Every clause includes
one verb group and one sentinel. (See [13] for a
treatment of the exceptions to this general rule.)
Verb groups and sentinels are therefore like left and
right parentheses and the rules of hierarchical

32



Computer Science and Informatics

K. Narayana Murthy, et al

9)

structure enforce proper nesting of these
parentheses. These are very strong constraints. For
example, we can determine the matrix clause verb
group by simply matching these parentheses. In
English, for example, if you set a counter to zero,
increment it every time you hit a sentinel and
decrement whenever you see a verb group, you will
be at the matrix clause verb group the first time the
count becomes minus one. In the above example,
the count becomes 1 at ‘if’, zero at ‘dislike’ and -1 at
‘take’ which is the matrix clause verb group.
Handling auxiliary shift in English questions, for
example, is thus very simple [13].

Let us consider clause structure in English in some
detail. The simplest case is that of a sentence which
has a single verb group in it. Here there is only one
clause and that is also the complete sentence
(example 9). Some of the arguments or even the
modifiers of space, time, etc. may be further qualified
by clauses, called relative clauses (example 10).
There may be subordinate clauses that indicate
place, time, etc (example 11). Clauses may be
subjects or complements of a verb group in another
clause (examples 12 and 13).

The famous company sells computers with the new
chip

10) Computers which include the new chip are not

reliable

11) After the bug in the new chip was announced, the

company’s sales have dropped sharply

12) That the company kept the secret for so long annoyed

everyone

13) We did not expect that this company would do such

a thing

In UCSG we shall make distinction between three
kinds of clauses denoted f _clause, rel_clause and
sub_clause. Every sentence must include one and
only one f_clause apart from those embedded within
the rel_clauses and sub_clauses if any. rel_clauses
indicate relative clauses - these clauses modify a
participant role in the F-Structure rather than
directly fill one such role. sub_clauses fill participant
roles and they include clausal subjects, clausal
complements and subordinate clauses that indicate
place, time, etc.

There are also nominalized clauses such as gerundial
and infinitival clauses. Nominalized clauses exhibit
dual nature - they behave like noun phrases as also
like clauses. We shall defer our treatment of these
nominalized clauses to a later section and limit our
current discussion to the types of clauses we have
given above.

In English, the matrix clause has no explicit sentinel
except possibly for the end of the sentence itself. The
beginning of relative clauses is marked by the
relative word sentinel ‘rl’ and the beginning of sub-
clauses is marked by a subordinating conjunction
sentinel ‘sb’.

Sub_clauses standing for clausal subjects, clausal
complements and modifiers of space, time, etc. can
come before as well as after ‘f_clause’ in an English
sentence. Within each ‘f_clause’, there can be relative
clauses modifying the various arguments and non-
arguments. There may be several sub_clauses and
several rel_clauses nested recursively. We can
capture these structures using the following CFG
rules. These twelve CFG rules form the complete
set of rules required for analyzing the hierarchical
structure of English sentences - they are not mere
samples. In fact rules of this kind apply to all
languages with parametric variations. The number
and nature of rules will be essentially same in all
languages and hence the parser will also work with
uniform efficiency. To illustrate this the rules for
Telugu, a relatively free word order are also given.
Since freedom of word order is a clause internal
phenomenon and we are here dealing with the inter-
relationships between clauses rather than the
internal structure of individual clauses, the same
grammar rules possibly with parametric variations,
will hold good for both positional and relatively free
word order languages. See [14] for more details on
parsing Telugu in UCSG.

ENGLISH

s->f clause

s ->f _clause sub_clause

8-> sub_clause f_clause
s->sub_clause f_clause sub_clause

TELUGU
s ->f clause

§->sub_clause f_clause

sub_clause -> s sh
sub_clause sub_clause -> s sb
sub_clause

sub_clause->sh s
sub_clause->sh s

f clause -> vg f clause -> vg
f_clause -> vg rel_clause
f clause -> rel_clause

f clause ->rel_clause

vg f_clause -> rel_clause vg
vgrel_clause

rel_clause ->s1l
rel_clause rel_clause ->srl
rel_clause

rel_clause ->1ls
rel_clause ->1ls

The parser applies the above CFG rules to produce
a clause structure tree. Knowing the linear position
of the verb groups and sentinels in the given
sentence, we can determine the clause boundaries.

For the example sentence 8) above, we will know

33



Computer Science and Informatics

Vol. 27 No.1, March 1997

that the sub_clause begins at ‘if’ and ends
somewhere after ‘dislike’ and before ‘take’. The
matrix clause begins where the sub_clause ends and
it ends at the end of the sentence. Exact clause
boundaries would get determined during functional
structure analysis.

Since both the recursive nesting and linear
precedence constraints embodied in these rules are
significant, the power of CFGs is both necessary and
just sufficient to deal with the hierarchical structure
of sentences. CFGs are ideally suited for hierarchical
structure analysis. They are more powerful than
required for linear structure analysis and they are
unsuitable for functional structure analysis.

5.3 The F-Structure:

In this last and final phase, functional roles are
assigned to the various participants in each of the
clauses in the input sentence. There have been a
variety of case systems proposed by various
researchers [1,5,6,8,11]. In UCSG we have used a
system of functional roles developed keeping the
question answering paradigm in mind [12]. Since
the clause structure would have already been
analyzed, the functional structure analyzer can work
clause by clause. Since lower level clauses play
specific roles in the higher level clauses in which
they are nested, starting with the matrix clause and
working down the hierarchy would greatly facilitate
role assignment. Also, since the inter-clause
dependencies including the sharing and
displacement of constituents are all related to the
hierarchical structure of clauses, working top-down
and passing down information about missing,
displaced and shared constituents will make the
functional structure analysis completely a clause
internal problem, thereby getting rid of all problems
of long distance dependencies. A combination of top-
down and bottom-up strategies is employed for role
assignment. Subcategorization frames and
selectional restrictions provide the top-down
constraints while the surface case marking
information attached to the word groups form the
bottom-up constraints. Any F-Structure that
satisfies all these constraints would be a valid result.
In the process, exact clause boundaries would also
get determined.

5.4 Relatively Free Word Order Languages and

Cross Serial Dependencies:

In UCSG we make this important observation that
freedom in word order applies only to the participant
roles within a clause. Verb groups and sentinels
follow strictly both linear and hierarchical order in

all languages. Hence we can still use the same kind
of CFG rules and determine the hierarchical
structure exactly as we do for positional languages
like English. See [14] as an example of UCSG being
applied to Telugu, a relatively free word order
language of south India.

We have also noted above that only nominalized
clauses can be cross serially nested in Dutch.
Nominalized clauses exhibit dual nature. They are
noun phrases and clauses at the same time. In the
UCSG view, recognizing noun phrases is the task of
the linear analyzer and assigning functional roles
is the task of the functional structure analyzer. The
hierarchical analyzer in UCSG views these
nominalized clauses as noun phrases and thus
simply ignores them. So we do not need to make
any changes to the hierarchical analyzer.

UCSG understands the powers and limitations of
phrase structure rules, divides the problem into sub
problems such that we get a separate component -
the H-Structure, for which phrase structure rules
of the CFG type are both essential and just sufficient.
Thus the hierarchical analyzer in UCSG works
uniformly and efficiently in all languages.

The F-Structure analyzer for different languages
would show some differences. For English we would
be using positional information for role assignment
whereas for Telugu, we would be relying more on
morphological information associated with the
nouns. Functional structure analyzer also analyzes
the predicate-argument structure of nominalized
clauses. Since nominalized clauses can also be
nested, the hierarchical structure of these clauses
is also to be handled by the functional structure
analyzer. However, since the hierarchical analyzer
would have already analyzed the nested structure
of clauses, the task is localized and the analysis of
nominalized clauses is much simpler. The
nominalized clauses in English are properly nested,
while in Dutch they are cross serially nested. The
functional structure analyzer employs a stack
discipline for English and a queue discipline for
Dutch for assigning roles to the noun phrases. In all
cases the general and unifying principle that the
arguments of a clause must come close together is
valid and this guides the functional structure
analysis. Thus there are no fundamental differences
in functional structure analysis of different classes
of human languages.

5.5 Efficiency Considerations:

It has been shown in [13] that identification of -
potential word groups involves only the aspects of




Computer Science and Informatics

K. Narayana Murthy, et al

optionality, repetition and linear precedence. There
is no hierarchical structure within word groups at
the syntactic level. Hence the power of finite state
machines is sufficient - we do not need the power of
CFGs. Hence linear structure analysis can be done
in linear time - the fastest ever possible. It is
significant that no other grammar formalism has
any component that is claimed to have linear time
complexity. =+

We have shown that context free grammar is
sufficient to capture the hierarchical structure of
clauses. We have only a small number of rules. The
length of the input string will also be much shorter
than the length of the complete sentence since only
verb groups and sentinels enter into hierarchical
structure analysis. Typically, the length of this string
is only about a third of the total sentence length
despite lexical ambiguities. Thus, hierarchical
analysis in UCSG will be highly efficient.
Hierarchical structure analysis can be done with a
worst case time complexity of the cube of the number
of verb groups and sentinels in the sentence. In the
current implementation, an active chart parser is
used. It may be noted that ATN, DCG, LFG, TAG
are all more powerful on the whole than CFGs.

Finally, since functional structure analyzer works
clause by clause F-Structure analysis will also be
very efficient. If there are c clauses in a sentence
and each clause has n words on the average, UCSG
parser would deal with the c clauses one by one,
each time dealing with n words at a time, in contrast
to other grammar formalisms where all the (n X ¢)
words would have to be assigned roles in the c
clauses all taken together. Thus parsing in UCSG
is much more efficient than in other grammar
formalisms like ATN, DCG, LFG, TAG and PG. See
[13] for more details and quantitative analyses.

5.6 Long Distance Dependencies:

In UCSG, we note that the ‘wh’ phrase in an English
question is only a noun phrase which is irrelevant
for hierarchical structure analysis. Hence linear and
hierarchical analysis go through exactly as for
assertive sentences except for the auxiliary shift
which can be easily handled since the matrix clause
verb group is known. Once the clause structure is
determined, the sentence initial ‘wh’ phrase has to
be allotted a role either in the matrix clause or
transitively in one of its embedded clauses. This is
not difficult since we already know the clause
structure. We combine information from the lexical
items in the ‘wh phrase’ and the filled and unfilled
roles in the matrix clause and in clauses embedded
in it and assign the correct role. Thus the UCSG

grammar does not require any special mechanisms
and the so called long distance dependencies are
handled in a simple and elegant way.

ATN uses the ‘hold’ mechanism and LFG uses special
bounded domination meta variables with
correspondence between the up and down meta
variables. TAG handles long distance dependencies
elegantly. In TAG since whole trees can be inserted
by the adjoining operation, we get the same effect
asin UCSG. In both UCSG and TAG, there are really
no long distance dependencies - all dependencies are
local to a clause and inserting any number of
additional clauses in between does not change this
property. TAG, however, uses trees and directly
manipulates entire trees which include verbs,
sentinels as well as all the noun phrases. Thus TAG
grammar is more complex - more complex than need
be. TAG is a mildly context sensitive grammar,
whereas UCSG uses only CFG power for hierarchical
structure analysis and then carries out functional
structure analysis clause by clause.

5.7 An example: Annotated extracts from a

transcript:

Given Sentence: The police believed that the dacoits
who wanted to rob the bank must have escaped into
the forest at night (Length: 20 words)

L-Structure analyzer: Identifies all potential word
groups and passes to H-Structure analyzer a string
of verb groups and sentinels only: ‘believed that who
wanted must-have-escaped’ (Length: 5)

H-Structure analyzer: Using only the above five
word groups and the twelve CFG rules, the H-
Structure Analyzer produces all possible clause
hierarchies one of which is shown below. Here curly -
braces indicate sub-clauses and square brackets
indicate rel_clauses. There is one left bracket
marking the exact starting position of the clause and
two right brackets marking the limiting positions
for the clause end point. Numbers associated with
the brackets help to match corresponding left and
right brackets.

The police believed {0 that the dacoits [0 who
wanted 0] to rob the bank 0] must have escaped
0} into the forest at night 0}

The following screen dumps show the final analysis
produced by the F-Structure analyzer. The numbers
at the top indicate the serial number of sentence
being parsed, the parse number and the clause
number. Clauses are numbered with the matrix
clause always being numbered one. In clauses 3 and
4 the subject ‘the dacoits’ is borrowed from the outer
clauses and is shown blinking on the screen.

35



Computer Science and Informatics

Vol. 27 No.1, March 1997

——= UCSP-English

1:1:2: The police belived 2

SUBJ
The police

— VdJ
believed

night

— OBJ

Sent : The police believed that the dacoits who wanted to rob the bank must have escaped into the forest at

——= UCSP-English

1:1:2: that the dacoits 3 must have escaped the forest at night

MOD
At

night

SPACE TIME
lﬁ into the forest l’ at night
SUBJ VG
l7 the dacoits must have escaped

CLS-LINK
‘V that

Sent : The police believed that the dacoits who wanted to rob the bank must have escaped into the forest at

36



Computer Science and Informatics K. Narayana Murthy, et al

-r—_ UCSP-English
1:1:3: Who wanted 4

SUBJ — VdJ — OBJ
the dacoits wanted 4

Sent : The police believed that the dacoits who wanted to rob the bank must have escaped into the forest at
night

——= UCSP-English

—

1:1:4:torob the bank

SUBJ — VdJ — OBJ
the dacoits to rob the bank

Sent : The police believed that the dacoits who wanted to rob the bank must have escaped into the forest at
night

37



Computer Science and Informatics

Vol. 27 No.1, March 1997

6. Conclusions:

In this paper we have described the essence of the
UCSG grammar formalism. We have discussed how
the UCSG view can lead to highly efficient parsing
of both positional and relatively free word order
languages and without any of the problems of long
distance dependencies. We have also indicated how
cross-serial dependencies can be handled. We have
shown that parsing in the UCSG system will be
much more efficient than in other grammar
formalisms. See [13] for more details. UCSG parsers
are currently being used for metaphor recognition
and interpretation [16], spelling and grammatical
error detection and correction and for machine
translation from English to Indian languages.

References .

[1] A Bharati, V Chaitanya, R Sangal, “Natural Language
Processing: A Paninian Perspective”, Prentice-Hall of India, 1994

[2] J Bresnan, R M Kaplan, S Peters, A Zaenen, “Cross-serial
Dependencies in Dutch”, Linguistic Inquiry, vol 13, no 4, Fall
1982 pp 613-635

[3] N Chomsky, “Lectures on Government and Binding”, Foris,
Dordrecht, 1981

[4] N Chomsky, “Knowledge of Language: Its Nature, Origin and
Use”, Praeger, New York, 1986

[5] C J Fillmore, “The Case for Case”, in E Bach, R T Harms (Eds),
“Universals in Linguistic Theory”, Holt, Rinehart and Winston
Inc, 1968

[6] CJ Fillmore, “The Case for Case Reopened”, in P Cole, J M Sadock
(Eds),”Syntax and Semantics”, vol 8, Academic Press, 1977

[7] J Greenberg, “Language Universals” in T A Sebeok, (Ed),
“Current Trends in Linguistics - III Theoretical Foundations”,
pp 61-112, The Hague Mouton, 1966

[8] J S Gruber, “Studies in Lexical Relations”, Doctoral dissertation,
M.LT. 1965

[9] A K Joshi, “Tree Adjoining Grammars: How much context
sensitivity is required to provide reasonable structural
descriptions?”, in D R Dowty, L Karttunen, A M Zwicky (Eds),
“Natural Language Parsing”, Cambridge University Press, 1985

[10] R M Kaplan, J Bresnan, “Lexical-Functional Grammar: A Formal
System of Grammatical Representation” in Bresnan (Ed), “The
Mental Representation of Grammatical Relations”, M.I.T. Press,
1982

[11] R E Longacre, “A Grammar of Discourse”, Plenum Press, 1983

[12] K Narayana Murthy, Sivasankara Reddy A, “INQUIRER: A Case
System based on Questions”, in E Balagurusamy, B Sushila,
(Eds), “Innovative applications in Computing”, Tata McGraw-
Hill, 1993

[13] K Narayana Murthy, “Universal Clause Structure Grammar”,
PhD thesis, Dept. of Computer and Information Sciences,
University of Hyderabad, 1995

[14] K Narayana Murthy, “Parsing Telugu in the UCSG Formalism”,
Proc. of Indian Congress on Knowledge and Language, vol II, pp
1-16, 1996

[15] F C N Pereira, D H D Warren, “Definite Clause Grammars for
Language Analysis - A Survey of the Formalism and a
Comparison with Augmented Transition Networks”, Artificial
Intelligence, vol 13, pp 231-278, 1980

[16] Vasudev Varma, “Tat-Tvam: A Metaphor Interpretation Model”,
PhD thesis, Dept. of Computer and Information Sciences,
University of Hyderabad, 1996

[17] W A Woods, “An Experimental Parsing System for Transition
Network Grammars”, in R Rustin (Ed), “Natural Language
Processing”, Algorithmics Press, New York, 1973

38



