
A New Approach to Tagging in Indian Languages

Kavi Narayana Murthy and Badugu Srinivasu

Department of Computer and Information Sciences

University of Hyderabad

knmuh@yahoo.com, srinivasucse@gmail.com

Abstract

Tagging is the process of assigning short
labels to words in a text for the purpose
of indicating lexical, morphological,
syntactic, semantic or other such in-
formation associated with these words.
When the focus is mainly on syntactic
categories and/or sub-categories, this
is also known as part-of-speech or POS
tagging. It may be noted that the term
tagging is broader than the term POS
tagging. One of the main reasons for
incorporating a tagging level between
lexical and morphological levels on the
one side and syntactic parsing on the
other side, is to reduce ambiguities. Tag
ambiguities multiply at an exponential
rate making syntactic parsing so much
more difficult.

The design of the tag set is critically
dependent on the purpose and the
approach taken for tagging. The beaten
path is to develop a manually tagged
database of sentences and then use
this for training a machine learning
algorithm. The machine learning al-
gorithm is expected to generalize from
these training examples so that it can
then tag any new sentence. Manual
tagging is difficult, time consuming and
prone to human errors. Consistency
is difficult to achieve especially if the
tag set is elaborate. Also, given the
limited amount of training data that is

practically possible to develop, a large
and detailed tag set will lead to sparsity
of training data and machine learning
algorithms will fail to learn effectively.
From these considerations, researchers
tend to restrict themselves to small,
shallow or flat tag sets which are least
confusing to human annotators. When
this idea is taken to the extreme, useful
sub-categorizations may be lost. In
this paper we propose an alternative
view and a novel approach to tagging
with focus on Indian languages. We
demonstrate our system for Telugu and
Kannada languages.

We believe that a lot of avoidable con-
fusion arises because of a heavy empha-
sis given to the orthographic rendering
of texts. We define words as meaningful
sequences of phonemes and we try not
to get influenced by the written form.
Whether and where spaces appear, for
example, are irrelevant to us. When
viewed from this stand point, we find
that the degree of lexical ambiguity is
far less than normally seen in other ap-
proaches. A vast majority of words are
not ambiguous at all. Most of the re-
maining cases of ambiguity at root word
level get resolved automatically once we
consider the morphology of the inflected
forms in which these words usually occur
in running texts. Therefore, we believe
that the main task of tagging is not one

of tag assignment but only of tag disam-
biguation. Tags can be assigned by the
dictionary and morphology components
quite effectively. This way, we can de-
velop large scale annotated corpora with
high quality of tagging, without any need
for manual tagging or any machine learn-
ing algorithm. We demonstrate our ap-
proach for Telugu and Kannada and ar-
gue for the merits of our approach com-
pared to other competing approaches.

1 Introduction

1.1 Language, Grammar and

Computation

We human beings are capable of producing
a number of different kinds of sounds. We
are capable of making interesting patterns by
stringing together these basic sound units,
called phonemes, into larger structures. And,
most importantly, we are capable of systemati-
cally associating meanings with these patterns
of sounds. Further, we are capable of learning
such associations, we are capable of effectively
communicating these association rules to oth-
ers. We are also capable of communicating
our ideas, thoughts, feelings and emotions
to others by expressing them in patterns of
sounds according to these mutually agreed upon
mapping rules. This faculty of the human mind
is called language. Language is the capacity to
map sounds to meanings and use this for speech
and thought. Language is, by far, a unique gift
of nature to mankind.

Computers are capable of storing and ma-
nipulating symbol structures. They are not
capable of understanding meanings. Computers
do not understand the meaning of any single
word in any human language. How then can
we put computers to good use in meaningful
processing of language? The answer to this
question comes from observing the fact that
there is structure in language and there is a
systematic relationship between structure and
meaning. This relationship between structure
and meaning can be observed, learned, taught

and used. Therefore, if only we take care
to store only meaningful structures and if
only we take care to allow only meaningful
manipulations of such structures, we can en-
sure that everything remains meaningful (to
us) throughout, although the machine itself
does not understand a word. This systematic
relationship between structure and meaning
is what we shall call grammar. Grammar is
thus the key to language processing in machines.

Grammar is the key to language processing
even in humans. We do not simply store all
possible linguistic units and their corresponding
meanings. The number of possible sentences, for
example, is infinite and we are capable of under-
standing the meaning of sentences we have never
heard before in our life. This is possible only be-
cause we have a grammar in our head and we use
this grammar to construct new sentences or to
understand sentences spoken by others. This is
true not only of sentences but also of all levels
of linguistic analysis.

To summarize, we must develop appropriate
representations of basic linguistic units, appro-
priate representations of their structures and
appropriate formalisms for manipulating these
structures at all levels of linguistic analysis.
What is appropriate and what is not is dictated
mainly by meaning. The written form has no
role at all in this. This is a brief summary of
the theory we have been working on. See [1] for
more details.

1.2 Language and Script

Language is a powerful means of communi-
cation. Of course we can also communicate
certain ideas and feelings through body lan-
guage, gestures etc. Simply getting up or
walking out can also convey some message to
others. We can even communicate at times
through silence. Nonetheless, by and large the
most effective and most widely used means of
communication among humans is by making
sounds. We have therefore defined language as
a mental faculty of human beings that enables
us to systematically map sound patterns to
meanings. Language is speech, it has nothing to

do with writing. We believe that an enormous
amount of confusion has been created both
within NLP and in Linguistics by giving too
much of importance to the written form. We
all learned our first language only by listening
and speaking. Reading and writing are learned
later, that too only upon being taught. Literacy
is not as important as people think today, one
can be a highly knowledgeable scholar without
being literate. Many languages of the world
do not have a script of their own, the need for
writing was never felt all through the history
of many cultures. Writing is a technology, that
has been invented by us as an after-thought,
while language is a natural gift of nature to
mankind. Do not confuse language for writing
or script. Language can exist without a script
but not vice versa. It is unfortunate, therefore,
that we have started defining everything based
on the written form. Words are not sequences
of letters or characters separated by spaces.
It does not matter if there are zero, one or
more spaces within or between words. In fact
inserting spaces is also a newly developed idea
- stone inscriptions do not have spaces between
words, for example. There are no spaces
between words in speech. A word cannot be
defined in terms of written symbols separated
by white space. This is just not right.

1.3 Words, Word Classes and Tagging

A dictionary stores words and their meanings.
Morphology deals with the internal structure
of words. A tagger attaches tags to words.
Sentences are built up from words. Words
form very important and fundamental units of
language. What exactly is a word then?

Words are minimal sequences of phonemes
with meaning. Words that indicate things are
called nouns. Words that indicate action or
state are called verbs. Words that describe
things are called adjectives. Nouns, verbs,
adjectives are examples of word classes. Con-
junctions, articles, prepositions etc. are not
word classes, they do not correspond to words,
they do not correspond to phoneme sequences

with a clear meaning of their own. The so
called function words are not words at all. Of
course we have various theories of meaning and
we may also have border line cases where it is
difficult to decide if a word has any independent
meaning of its own or not. We will have to
take a carefully considered, yet practicable
and consistent stand point. A sentence is not
merely a sequence of words, a sentence may
contain words, feature bundles that can be
associated with words or other larger linguistic
structures, connectives etc. The sentence ’John
has been jumping’ does not have four words, it
has only two. John is the person who is doing
something and what he is doing is expressed by
the three tokens ’has been jumping’. John is
performing only one activity, not three. There
can thus be only one verb here, after all, a verb
is a word that indicates an action and there is
only one action here. There are no such things
as auxiliary verbs, we are not indicating any
auxiliary, constituent or related activities here,
we are talking of one atomic activity and that
is all. From these examples, it should be clear
that our theory has far reaching implications
at all levels of linguistics and NLP. Interested
readers may see [1] for more details.

Some may argue that definition words in
terms of meanings is not practicable since
computers do not understand meaning. If
the right thing is difficult to do that is not a
valid excuse for doing the wrong thing. Do
pre-processing, do post-processing, have manual
intervention, do whatever you wish but do not
stray away from the truth too far. We believe
that it is practically possible to work with
meaning-defined words in all languages of the
world.

Word classes such as noun, verb and adjective
are also called ’Parts of Speech’ (POS) by tra-
dition. For the sake of convenience, we may use
short labels, called tags, for these. For example,
nouns may be indicated by N and verbs by V.
POS Tagging is the process of attaching such
short labels to indicate the Parts of Speech for
words.

Tags need not indicate purely syntactic
categories. There is need for sub-categorization
in syntax and a tagging scheme may include
not only the major grammatical categories but
also sub-categories. For example, one may
talk of common nouns and proper nouns, of
intransitive verbs and transitive verbs. One can
actually go beyond purely syntactic properties
and include lexical, morphological or even
semantic information in the tags. It all depends
upon what we need and what we can. In this
paper we use the terms Tag and Tagging in this
broader sense, not restricting ourselves to POS
tags or POS tagging.

Tagging is only for convenience. However,
tagging is usually intended to reduce, if not elim-
inate, ambiguities at word level. It is well known
that syntactic parsing is at least cubic in com-
putational complexity and having to consider
several alternative interpretations for each word
can exponentially increase parsing complexity.
Tagging has been invented in NLP as an inde-
pendent layer of analysis, sitting between mor-
phology and syntax, mainly to help the syntac-
tic parser to do better in terms of speed. How-
ever, if we take the definition of word we have
given here, we will find that sentences are not as
long as they appear to be (in terms of number
of words) and words are not as ambiguous as
they appear to be either. Therefore, syntactic
parsing is actually orders of magnitude simpler
than what we usually think it is. To this extent,
the importance of tagging is reduced. It is worth
noting that linguistic theories never posited tag-
ging or chunking as separate layers of analysis
sitting between morphology and syntax.

1.4 Grammar

Words are finite, the mapping from words
(that is phoneme sequences) to meanings can
be stored in our brain. This is the mental
lexicon. But there are infinitely many possible
sentences and we can understand all of them.
Our mental capacity is finite and so we must
necessarily be using a finite device to handle
the infinitely many sentences. This mental

device we have that enables us to construct and
analyze infinitely many valid sentences using
the finite vocabulary we have is called grammar.

Consider the sentences ’Rama saw the run-
ning deer’ and ’Rama saw the deer running’.
Sentences having the same set of words can thus
vary in meaning and the difference can only be
accounted for by the structure. Grammar is
the finite device that maps an infinite variety
of structures to their corresponding meanings.
Grammar is the central core of the human
language faculty - without grammar, language
is impossible.

The lexicon maps phoneme sequences to
meanings. Sequence is also one kind of struc-
ture, although a simple one. Therefore, a
lexicon is also a grammar. The lexicon is not an
adjunct to grammar or an independent module,
it is itself a part of grammar.

Words of a language are finite and hence list-
able. If all words of a language can be sim-
ply listed in the lexicon, there is no need for
morphology. However, there is structure inside
words, there are systematic relationships be-
tween these structures and meanings and these
systematic relations can be observed, learned,
taught and used by the human mind. The hu-
man mind has a natural tendency to observe sys-
tematic relationships and make generalizations.
Thus, morphology, which deals with the internal
structure of words in relation to their meanings,
also become a component of grammar. The lex-
icon, the morphology and the syntax constitute
the three main components of grammar up to
the sentence level.

1.5 Computational Grammar

A complete grammar of any given language
must include the complete lexicon, the complete
morphology and the complete syntax. Samples
will not do, we need to be comprehensive and
exhaustive. Only a complete grammar can
define the language fully. The lexicon, morphol-
ogy and syntax should be mutually exclusive
and complementary. For example, what is

handled by morphology need not be, in fact,
should not be listed in the lexicon. Because
of such interactions, it is not possible to have
a dictionary without morphology and syntax,
nor can we have a syntactic grammar without
a dictionary. The dictionary, morphology and
syntactic grammar always go together and must
always be viewed as a whole.

We cannot open up the human brain and
see what kind a grammar is sitting there but
a good grammar needs to be psychologically
plausible as also simple, neat and elegant. It
must capture generalizations adequately and
satisfactorily. It must have predictive and
explanatory power. It must be universal. A
child born in any language community any-
where in the world picks up its mother tongue
with equal ease and in more or less the same
amount of time. Hence there must be universal
principles underlying and governing all human
languages. The main goal of modern linguistics
is to discover such a universal grammar.

The main goal of computational linguistics
is to discover such a comprehensive yet simple,
neat, elegant, and universal grammar. The
computer is only a powerful tool in our hand in
this grand project. A computational grammar
is not a different kind of grammar, it is only a
comprehensive, universal, yet simple and ele-
gant grammar, the only difference is that it has
been implemented, tested and validated on real
data by actually building computational models.

A complete grammar must be capable of han-
dling each and every valid structure and map it
to appropriate meanings. How can we be sure?
The only way to test and ascertain this is to test
on large scale real life data. A computational
grammar is simply a grammar that has actually
been implemented as a computer program and
subjected to extensive testing and validation
on real life linguistic data. Even to build such
an exhaustive grammar, we invariably need
large scale data. A computational grammar
is designed, developed, tested, validated on
large scale real data. In order to do this, the

grammar itself needs to be defined at a very
minute level and in a very precise way. A
whole lot of definitions and treatments you will
find in grammar books are very superficial,
cursory, exemplary and merely illustrative, not
exhaustive. These have never been tested and
validated.

Linguists often fail to understand the impor-
tance of the size of data used for building and
testing grammatical systems. They think there
are only a few types of structures and there is
no point in looking at a thousand examples of
each kind. There is more to it than meets the
eye. There are a large number of significant
linguistic phenomena and not all of them occur
equally frequently. Those who are used to
looking at only a few important phenomena will
not understand the importance of large scale
data. Rare phenomena are more likely to occur
in a large corpus than in a small corpus. There-
fore, when the aim to develop wide coverage,
comprehensive, if not exhaustive grammars, the
importance of a large and representative corpus
cannot be undermined.

We believe that we can go much closer to the
dream of a universal grammar if we take the
definition of word we have given here seriously.
Meaning is central to language and linguistics
and any process that causes loss or distortion
of meaning is simply not acceptable. We have
started off on our journey in this direction and
this paper we shall give you a glimpse of our first
few steps.

2 Designing a Tag Set

Tagging approaches based on machine learning
require manually tagged training data. Manual
tagging becomes difficult and error prone as the
tag set becomes large and elaborate and so there
is a strong tendency to go for small, flat tag sets.
Such tag sets may not capture all the required
and/or useful bits of information for carrying
out various tasks in NLP. Flat tag sets are also
rigid and resist changes. Hierarchical tag sets
are more flexible. In our case, we do not depend

upon statistical or machine learning techniques
and we do not need any training data. No
manual tagging work is involved and so we can
afford to have large, elaborate, hierarchical tag
set that carries as much of lexical, morpho-
logical, syntactic and semantic fields as we wish.

One of the biggest difficulties that researchers
face while designing tag sets, while performing
manual tagging and while building and eval-
uating tagging systems is the very definition
of tags. Tags involve lexical, morphological,
syntactic and semantic considerations and often
there are conflicts. One cannot go purely by
intuitive definitions such as ’nouns are things,
pronouns stand in place of nouns and adjectives
modify nouns’. We will need to give precise
definitions and criteria to decide which tag
label should be given to which word. Let us
illustrate with some examples. In Kannada, one
may argue that ’obba’ is a pronoun because it
stands for some one person. Another may argue
that it should be treated as an adjective since
it indicates number, (apart from indicating
that the following noun should be human) as
in ’obba huDuga’ (cf. ’oMdu mara’). A third
person may counter this by saying it cannot be
an adjective since it can take nominal inflections
such as number and case. The word ’obba’
takes nominal inflections and can be subject of
a sentence and so it can only be a noun or a
pronoun. But pronouns cannot modify nouns,
they can only stand in place of a noun, and
so this word can only be taken as a noun. In
order to avoid such confusions, we will need
to delineate the characteristics of each of the
categories and sub-categories very precisely so
that even a machine can decide on the right
tag, given the necessary properties. We shall
illustrate this with just a few examples below.

Since both nouns and pronouns can take
nominal inflections and both can function as
subjects and objects of sentences, why should
we even make a distinction between them? Af-
ter all, there is no real difference in morphology
either. Upon careful examination, we find that
pronouns are neither modified by adjectives nor

do they function like adjectives, modifying other
nouns. Nouns can. A noun can be modified by
a demonstrative adjective, a pronoun cannot
be. Nouns can be modified by quantifying
adjectives, pronouns cannot be. As such, there
are significant differences at the level of syntax
and that is why we must distinguish between
these two categories. Similarly, common
nouns differ from proper nouns in significant
ways. Demonstrative adjectives, quantifying
adjectives, ordinals, and descriptive adjectives
need to be treated differently since they have
different roles in chunking. Not making such
distinctions will lead to unnecessary explosion
of possible parses, making the parsing process
slow and less accurate. Even within proper
names, names of persons, places etc. vary in
their grammatical properties. Place names
appear more in nominative, dative and locative
cases, and not so much in accusative case. A
place name can modify a person name but not
vice versa. Place names can modify common
nouns, person names usually will not. Of course
some of these may be hard constraints and
some may be more of a matter of degree but
these do matter in parsing.

Keeping such considerations in mind, we
have developed a fairly elaborate hierarchical
tag set starting from Kannada and Telugu
data. Tagging is an intermediate level and
appropriateness of tag set and tag assign-
ments can only be verified by placing it in
between morphology and syntax and building
and testing actual systems. We are in the
process of developing an end-to-end system
and this gives us strong basis to argue why
our design is superior and why exactly other
possible alternatives will not do. Let us simply
list our main tags here. See [2] for definition
of each tag and comparisons with other tag sets.

It must be made clear that conjunctions, in-
terjections, symbols etc. are not really words at
all and they really have no place in the dictio-
nary. Nevertheless, they are parts of sentences
and we need to deal with them at the level of
syntax. For the sake of practical convenience,

we have included them within the dictionary in-
stead of storing them elsewhere.

3 A Novel Approach to Tagging

There is only one critical question that we need
to ask when it comes to tagging - where can we
find the crucial bits of information required to
assign the correct tag to a given word in a given
sentence? Statistical approaches assume that
the necessary information comes from the other
words in the sentence. In many cases, only the
words that come before the current word are
taken into direct consideration. We believe, in
sharp contrast, that the crucial information re-
quired for assigning the correct tag comes from
within the word. It is the internal structure of a
word that determines its grammatical category
as also sub-categorization and other features.
True, there will be instances where the internal
structure alone is not sufficient. Firstly we find
that such cases are not as frequent as you may
be thinking. A vast majority of the words can
be tagged correctly by looking at the internal
structure of the word. The crux of tagging lies
in morphology. This is clearly true in the case
of so called morphologically rich languages but
this is actually true of all human languages
if only we define words in terms of meanings
rather than in terms of the written form and
spacing considerations. Secondly, in those
cases where morphology assigns more than one
possible tag, information required for disam-
biguation comes mainly from syntax. Syntax
implies complex inter-relationships between
words and this cannot be reduced to a mere
sequence of entities. In Kannada, for example,
the plural/honorific imperative form of a verb
and a past conjunctive verbal participle form
are the same. Hence morphology cannot resolve
this ambiguity. This ambiguity can only be
resolved by looking at the sentence structure.
If this word is functioning as a finite verb,
it must be the imperative. If it is followed
by another finite verb later in the sentence,
this could a conjunctive participle. Statistical
techniques are perhaps not the best means to
capture and utilize such complex functional

dependencies. Instead, chunking and parsing
will automatically remove most of the tag
ambiguities. Given this observation, we use
a simple pipe-line architecture as depicted in
the figure below. We keep going forward and
we do not need to come back again and again
to preceding modules. We carry with us all
the necessary/useful information in the form
of tags, each module adding or refining the
information as we move on. The lexicon assigns
tags to words that appear without any overt
morphological inflection. Morphology handles
all the derived and inflected words, including
many forms of saMdhi. The bridge module
combines the tags given by the dictionary and
the additional information given by the morph,
making suitable changes to reflect the correct
structure and meaning where required. The
chunker takes these tag sequences to produce
chunks. The parser analyzes these chunk se-
quences and produces a dependency structure.
The overall tag structure remains the same
throughout, making it so much simpler and
easier to build, test and use.

3.1 Architecture

Pre−Processor

Dictionary−Morphology

Bridge

Chunker

Parser

Input Text

Structural Description

FIG 1 The System Architecture

3.2 Design of the System

3.2.1 Layered Approach to Grammar

We have two contradicting requirements.
Firstly we need to develop a grammar that is
simple, neat and natural. Secondly, we need to
develop a grammar that can actually handle all

linguistic data as we see in a corpus, including
all the variations and deviations. A real corpus
will include loan words, code mixing and code
switching (that is, mixing of the grammars of
two different languages, or switching from one
to the other in the same discourse), mixture
of various dialects, mixing of colloquial forms
and standard written forms, mixture of old
and modern versions, spelling variations and
spelling errors, incomplete and ungrammatical
sentences, sentence fragments such as headings
and titles, tables, lists, everything. How do
we satisfy both of these contradictory require-
ments?

The solution is to go for a layered approach
to grammar development. There will be a core
and several layers or wrappers around it. The
core will be designed for a restricted subset of
the whole of language. These restrictions should
not come in the way of expressive power, the re-
stricted set should also be a complete language,
not a sub-language. The core only removes
those dimensions of variability that do not
restrict the expressive power of the language.
For example, in English both ‘grey’ and ‘gray’
are accepted spellings and if we choose any one
of these to build a grammar of English, such a
grammar could still be a complete grammar of
English. Dialectal variations, colloquial forms,
loan words, code mixing, spelling variations,
even grammar variations can be abstracted out
to define the core grammar. In our work here,
the standard written form of modern Kannada
and Telugu are taken to define the core.

The dictionary includes the standard forms
as also the variants with a pointer back to the
standard forms. The pre-processor handles
dialectal and colloquial forms and spelling
variations. A separate module is posited for
handling spelling errors, named entities, etc.

This layered approach to grammar has the po-
tential to give us simple, elegant, efficient gram-
mars which can also handle all the jaggy edges
we see in actual usage.

3.2.2 The Dictionary

The dictionary is supposed to contain words
and the associated meanings. Meanings are
only for use by humans, the machine cannot
do anything with meanings directly, it does not
understand the meanings of words whatever
language we may choose to use. In the current
version of our system, our focus has been only
on the automatic processing aspects and so we
have left out meanings. We will need to add
meanings later. Right now, the dictionary only
contains words and the associated grammatical
information. We include a variety of kinds of
grammatical information including lexical, mor-
phological, syntactic and even semantic aspects,
depending upon the need and usefulness. For
example, gender is given for nouns in Kannada
since the rules of Kannada morphology are con-
ditioned on gender. Proximal/Distal distinction
is shown for pronouns as this is useful for human
users of the system, although the computational
grammar itself does not make use of this infor-
mation. Transitivity information is indicated
for verbs since this helps in syntactic analysis.
Whether the final ’u’ vowel in nouns is real or
enunciative is indicated since this is required
for correct analysis and generation of Kannada
noun forms. Our use of the terms tag and
tagging is thus much more broad based than
mere syntactic or POS tags and tagging. What
words are listed or not listed in the dictionary
is directly related to what forms are handled
by morphology. All exceptions, where we do
not have a generic and productive-enough rule
that can be implemented within morphology,
are listed in the dictionary.

We find that about 40% of all words found
in any text are found directly in the dictio-
nary. Hence avoiding morphology in these
cases would make the system faster. More
importantly, this can also avoid unintended and
unexpected analyses. This choice implies that
whenever a word is listed in the dictionary,
complete information as would have come from
morph should be made readily available in
the dictionary itself. We will need to give

number and case for nouns, for example, since
in a majority of cases, nouns occurring in
bare stem form indicate singular number and
nominative case in Kannada, both of which
involve zero morphology. More importantly,
if a word has two or more analyses, all must
be given in the dictionary. Thus the Kannada
word ’kaaDige’ is listed in the dictionary
saying it is a noun in singular nominative form
as also a singular dative form of a different noun.

At times, there will be clashes between what
morphology demands and what syntax and
semantics demand. For example, words such
as ’guru’, ’praje’ are human nouns in Kannada
but they undergo plural formation as per the
rules of non-human nouns. One option is to
sub-categorize such nouns and let the grammar
use this for correct analysis and generation.
Another solution is to let the morphology treat
these words are neuter nouns and let syntax
look at them as human nouns. In our system,
whenever there is a clash of requirements, we
generally favour the earlier module since failures
early on in a pipe-line architecture can be more
devastating than failures at later stages. We
make sure that suitable corrections are made as
we move on, so that we get the right results at
the end.

3.2.3 Morphology

It is unlikely that the human mind uses two
different grammars, one for analysis and one
for generation. That would be a bad choice
even from the point of view of simplicity and
efficiency. It is not an intelligent choice at all.
Therefore, the same grammar must be usable
both for analysis and for generation. In our
system the computational grammar at the level
of morphology is designed as a Finite State
Machine. We use this FSM bidirectionally.
The standard Finite State Machine can be
and needs to be extended in several ways to
facilitate morphological analysis and genera-
tion. Let us look at the various extensions
have done for our work on Telugu and Kannada.

• Forward and Reverse Processing: The writ-
ten form of a word is a sequence of mor-
phemes, not a sequence of characters. The
dictionary head words are also morphemes.
By adding other morphemes as suffixes or
prefixes to these, we build full word forms.
Kannada and Telugu are basically suffix-
ing languages, prefixes are not used produc-
tively. In order to generate a word form,
we start with the given root taken from the
dictionary and we keep adding suffixes as
we pass through the FSM from the start
state to the terminal state. The resulting
string will be the fully inflected and/or de-
rived word form. For analysis, we can use
the same FSM grammar in reverse. We can
start with the end state and work back-
wards towards the start state. This is al-
ways possible. Every FSM has a single start
state and we can make any FSM to have
a single terminal state, by connecting all
the terminal states to a newly added state
through epsilon arcs. Having a single termi-
nal state makes the algorithm simpler but
this is not theoretically essential. We start
with the full word form and keep remov-
ing suffixes one by one, until we reach the
start state by which time we should be left
with only the bare stem, which can then
be checked with the dictionary. Using the
same grammar for both analysis and gen-
eration has several advantages. Firstly, the
effort needed to develop an analyzer and a
generator is reduced significantly. Secondly,
this facilitates testing and evaluation. It is
always easy to test and evaluate an ana-
lyzer, we can simply run it on a large test
data set and observe the results. Testing
a generator is harder, it requires more of
manual effort. If we use the same gram-
mar for both, we can test the analyzer be
sure that the generator will also be correct.
Thirdly, since there is no evidence to show
that we use different grammars for analy-
sis and generation in our minds, this is the
natural, normal, intelligent way. Computa-
tional efficiency is not affected either.

• Finite State Transducer: Instead of just
accepting or rejecting a given string, we
can produce some output. Depending upon
whether the output bits are attached to the
arcs or to the states we have what are called
Moore and Mealy machines. In the case of
analysis, this facilitates the production of
a structural description of the given word
form. In the case of generation, this facil-
itates such a structural description to be
given as input, asking for the correspond-
ing word form. This is especially useful in
Machine Translation. The source language
words need to be analyzed and the target
language word forms need to be generated,
as per given grammatical features. In our
work, we attach output strings to the arcs.
All that we have to do is to add another
column to the FSM table, indicating the
output for each arc. The computational ef-
ficiency of FSMs is not affected.

• Adding a Category Field: Inflectional mor-
phology is mainly limited to nouns and
verbs in Telugu and Kannada. The suf-
fixes are almost completely exclusive, noun
forms and verb forms rarely clash, unlike in
English. In English there are very common
clashes such as between the plural forms of
nouns and third person, singular, present
tense forms of verbs. In our languages, the
noun and verb inflection grammars are dis-
joint. However, once we add derivation,
it becomes difficult to maintain separate
FSMs. Derivation involves adjectives and
adverbs too. Therefore, it is better to merge
all the aspects of morphological grammar
into one FSM. Particular arcs apply only
to particular categories and this can be in-
dicated by adding a new field for category.
For clitics etc., where any category will do,
we can indicate this by using a label such as
‘any’. In principle, these FSMs can be bro-
ken into separate FSMs, and hence there is
no change in the computational efficiency
or other properties as long as the categories
do not change. The category fields merely
helps in selecting the suitable sub-part of

the combined FSM.

• Derivation: Derivation involves change in
category. To facilitate derivation, we allow
two categories on an arc, the initial cate-
gory and the category after derivation. A
word starts off with a particular category
and changes colour, so to say, taking a dif-
ferent category and continues to move on
the same combined FSM. Thus handling
derivation requires very little change to the
whole system. Inflection and derivation are
not water-tight compartments, there is a
seem-less joint and the simplicity of this ap-
proach is actually stands testimony to this
view. Computational efficiency does not
change whether we use on big FSM or sev-
eral smaller ones, addition of linear time al-
gorithms will still give us a linear time algo-
rithm in the worst case. Hence derivation
does not change the overall computational
efficiency of the system.

• saMdhi: The biggest change we will need is
to introduce a saMdhi process while adding
suffixes. Telugu and Kannada are highly
inflectional as also agglutinative, there are
significant morph-phonemic changes at the
juncture when morphemes combine. In gen-
eral saMdhi may involve insertion, substi-
tution, as also deletion of characters, hence
it is tricky to establish the computational
efficiency bounds.

• Loop Control: There are loops in the FSM
and this causes no problem at all in analy-
sis, as analysis is guided by the morphemes
actually found in a given string. For genera-
tion, however, this can pose a problem, the
program can get into infinite loops. This
does not happen when we ask for a particu-
lar word form to be generated from a given
set of features, this happens only when we
try to generate all forms of a given stem or
root. Although a FSM does not have mem-
ory, here we may add a counter to prevent
infinite looping. Generating all forms of a
given stem is not a natural process for hu-
man beings, this is simply a technological

feasibility. Therefore, this is not a serious
problem as far as the theory is concerned.
Further, after a closer study, we can elimi-
nate loops by expanding out on the various
possibilities.

• External saMdhi and Compounds: Com-
pounds also involve saMdhi. When there
is saMdhi between two or more words, one
thing that needs to be done is to locate
the place where we can cut and separate
the components. Blindly trying at each
byte position is no good. We cannot even
work with akShara-s, saMdhi is basically a
morpho-phonemic process, while akShara-
s are purely units of writing. In our ap-
proach, we start analyzing the compound
word or a sequence of words conflated by
external saMdhi as if it is a single word. We
work leftwards from the right end. Once
we reach the start state of the network,
we check the remaining string against the
dictionary. In the case of external saMdhi
or compound, we will not find a match.
At this stage, we will need to use heuris-
tics to hypothesize possible places to cut.
An essential requirement of compounding
is that there be a modifier-modified rela-
tionship between the components. saMdhi
usually avoids this, saMdhi usually occurs
between categories that are grammatically
unrelated, for example, a pronoun and an
adverb. Certain kinds of compounds oc-
cur more regularly. For example, n-v com-
pounds are very frequent, here the verb
should be one of the few known verbaliz-
ers, not any arbitrary verb. Similarly n-n
compounds are more common.

We give below a sample of the Finite State
Grammar for Kannada. The current FSM has
405 transitions.

0 3 n gaLu PL

0 3 n epsilon SL

3 95.5 n annu ACC

3 95.5 n iMda ABL

17 20 v id PAST

17 21 v utt PRES

17 22 v uv FUT

20 95 v enu P1.MFN.SL

20 95 v evu P1.MFN.PL

20 95 v e P12.MFN.SL

20 95 v ir(i) P2.MFN.PL

20 95 v anu P3.M.SL

17 100 v ali OPT

17 95 v ooNa HORT.P1.PL

17 25 v al(u) INF

25 26 v ee CLIT.ee

25 26 v uu CLIT.uu

25 100 v uu CONJ

25 95 v illa PAST.NEG

25 26 v epsilon NULL

22 4 v>n udu GRND

20 50 v>adj (a) RP

94 97 any uu CLIT.uu

94 97 any oo CLIT.oo

94 97 any epsilon NULL

94 100 any yaa CLIT.INTG

100 0 n>v ennu +V.ennu

100 0 v ennu +V.ennu

100 0 n>v aagu +V.aagu

100 0 n>v iru +V.iru

The FSM is also stored in a single plain
text file. Zero is the assumed start state and
100 is the only terminal state. Each transition
shows the starting state, the ending state, the
category, the suffix and the feature bundle
associated with it. Note how categories can
change in derivational morphology. A plus
sign prefix indicates that there is external
saMdhi at this point. Parenthesized parts

indicate optional dropping, this is one way
to handle variations in internal saMdhi that
defy the existing standard rules of saMdhi
formation. Many suffixes, especially the clitics,
have multiple roles with multiple meanings. For
example, ‘aMte’ added to nouns can indicate
comparative, the same clitic added to verbs may
mean several different things as exemplified in
sentences such as ‘raamanu baradaMte taDe’,
‘raamanige baruvaMte heeLu’, ’aLabeeDa
magu, naaLe niinee modalu haaDuveyaMe’.
The clitic ‘oo’ may indicate doubt, it can act
like an interrogative too. Disambiguation is not
within the scope of morphology, we need to go
at least to the level of syntax. Therefore, the
feature bundles simply indicate the suffix itself,
without trying to go further. This is one way
explicit ambiguities are cut down.

Let us now look at some examples of the out-
put of morphological analyzer:

manege<mane:N-COM-COU-N.SL-NOM:

%n-SL-DAT->

maaDuttaane<maaDu:N-COM-COU-N.SL-NOM||

V-TR1:%v-PRES-P3.M.SL->

maaDidare<maaDu:N-COM-COU-N.SL-NOM||

V-TR1:%v-PAST-COND->

maaDabeekaagibaMdaaga<maaDu:

N-COM-COU-N.SL-NOM||V-TR1:

%v-INF-CMPL-AUX.aagu-CJP.PAST

-AUX.baru-PAST-RP-%adj-CLIT.aaga->

maaDibiTTaraMtaa<maaDu:

N-COM-COU-N.SL-NOM||V-TR1:

%v-CJP.PAST-AUX.biDu-PAST-P3.MF.PL

-CLIT.aMte-CLIT.INTG->

3.2.4 The Bridge Module and Tagging

Here the bits of information obtained from
the dictionary and morphology are combined
to generate final tags. For the examples shown
above, the tagger will produce the following
tags:

manege||mane||N-COM-COU-N.SL-DAT

maaDuttaane||maaDu||V-TR1-PRES-P3.M.SL

maaDidare||maaDu||V-TR1-PAST-COND

maaDabeekaagibaMdaaga||maaDu||

V-TR1-INF-CMPL-AUX.aagu-CJP.PAST

-AUX.baru-PAST-RP-adj-CLIT.aaga

maaDibiTTaraMtaa||maaDu||V-TR1

-CJP.PAST-AUX.biDu-PAST-P3.MF.PL

-CLIT.aMte-CLIT.INTG

It may be noted that noun verb ambiguities
have been resolved by morphology. The bridge
module has a challenging task since it has to
iron out all differences between the lexicon and
morphology as also between overt structure and
meaning.

We call the complete labels such as N-COM-
COU-N.SL-DAT as single tags. Tags are made
up of tag elements such as NOM and N.SL.
Tag elements may in turn be made up of tag
atoms. N.SL is one tag element with two
tag atoms. The first field is always the main
category and the subsequent one or two fields
may indicate sub-categories. Rest of the fields
indicate grammatical features.

It is also important to observe that the same
overall scheme pervades all levels of analysis,
starting from the dictionary and going all the
way up to the syntactic parser.

3.2.5 The Parser

We choose to perform dependency parsing
as we believe a dependency structure is more
revealing and more directly connected with the
meaning than other possible parse structures.
Expectations from the verbs form the top-down
force and the suitability of noun phrases act as
the bottom-up force, and together we have a

constraint satisfaction solution. Non-arguments
are filled up later, as appropriate. Currently
we have only small, sample systems for the
purposes of demonstration alone. More work is
on.

Thematic roles in a dependency parse are
filled by whole noun groups and recognition of
noun groups is thus a sub-task of parsing. This
is the essence of what is commonly known as
chunking. We use Finite State Grammars for
np-chunking. See [2] for more details.

Now that we have morphological analy-
sers and generators, as also syntactic pars-
ing/generation system for Kannada and Telugu,
we can demonstrate automatic translation be-
tween Kannada and Telugu.

4 Experiments and Results

Here we shall give details of the system we have
built for Telugu. The status of Kannada is
similar.

We have performed POS tagging experiments
on various corpora. F1 is a randomly selected
file from TDIL corpus. F2 is set of sentences
extracted from the TDIL corpus containing
about 15,000 most frequent words from this
corpus. These most frequent words have a great
significance not just because they account for
more than 60% of the whole corpus but also
because they include the most confusing items
from the point of view of lexicon, morphology
and tag assignment. The rest of the words
forming the bulk of the corpus are the simplest
as far as tagging is concerned. In order to
be sure that there is no over-fitting for any
particular data set, we have next attempted
tagging files F3 and F4 from the Eenadu Telugu
daily newspaper. The table below shows the
performance of the system as on date. Here D
indicates the number of words directly found in
the dictionary, M indicates the number of words
analyzed by the morph, D-AMB is the number
of words found in the dictionary and having
more than one tag, M-AMB is the number of

words analyzed by morph and having more
than one tag. UNK indicates the number of
words that remain untagged.

It may be observed that about 40% of the
word forms are directly found in the dictio-
nary and 50-60% of the words are analyzed
by morph. Unless the texts contain a large
percentage of proper nouns (ex. F4), only some
5-10% of the words remain untagged. Most
of the unknown words are loan words, proper
nouns, or words involving external saMdhi
or compounds. Further work on dictionary
and morphology can reduce the number of
untagged words in future. Of the tagged words,
only about 10% of the words have more than
one tag assigned. The maximum number of
tags that can get assigned is 4 but this is a
very rare case. Even getting 3 analysis is a
rare phenomenon. Only a few typical kinds
of ambiguities occur most of the times and
preliminary studies have shown that a majority
of them will automatically get resolved through
chunking and parsing. We may not need a
statistical approach to resolve these but if one
wishes, we can easily tag the whole corpus using
our system and create training data from that.
One can also try a variety of heuristic rules to
resolve the remaining ambiguities.

Upon careful observation of the tagged sam-
ples, we find that most words are tagged
correctly. In order to be doubly sure, we
again tagged 252 sentences selected from various
grammar books including a wide variety of sen-
tence structures. these sentences include 1278
tokens. All of these get tagged. Only two words
were tagged incorrectly. Only 140 words are as-
signed more than one tag.

5 Conclusions

In this paper we have presented a new approach
to tagging based on our theory of language,
grammar and computation. We have demon-
strated the viability and merits of our ideas
through actually developed systems for Kan-
nada and Telugu. More work is on.

6 Bibliography

1 Kavi Narayana Murthy,“Language, Gram-
mar and Computation”, forthcoming.

2 Kavi Narayana Murthy, Srinivasu
Badugu,“On Tagging of Natural Lan-
guage Texts”, forthcoming.

3 Kavi Narayana Murthy, ”A Network and
Process Model for Morphological Analy-
sis/Generation”, ICOSAL-2, The Second
International Conference on South Asian
Languages, 9-11 January, 1999, Punjabi
University, Patiala, India

4 G Bharadwaja Kumar, Kavi Narayana
Murthy and B B Chaudhuri, ”Statistical
Analysis of Telugu Text Corpora”, Inter-
national Journal of Dravidian Languages,
36:2, June 2007, pp 71-99

5 CH. Narsinga Rao and Kavi Narayana
Murthy, ”On the Design of a Hierarchical
POS Tagset for Telugu ”, MTech thesis, De-
partment of Computer and Information Sci-
ences, University of Hyserabad, 2008

6 K. Anil Kumar, ”Morphological Analysis
of Telugu Words”, MTech thesis, Depart-
ment of Computer and Information Sci-
ences, University of Hyderabad, 2003

7 Sankaran Baskaran, ”Hindi Part of Speech
Tagging and Chunking”,Proceedings of NL-
PAI Machine Learning Workshop on Part
of Speech Tagging and Chunking for Indian
languages, IIIT Hyderabad, Hyderabad, In-
dia, 2006

8 Rama Sree R.J, Umamaheshwar Rao G
and Madhu Murthy K.V, ”Assessment and
Development of POS Tagset for Telugu”,
The 6th Workshop on Asian Language Re-
sources, IJCNLP, IIIT Hyderabad, Hyder-
abad, India, 11-12 January, 2008

9 Umamaheshwar Rao G, ”Compound Verb
Formation in Telugu”, National Workshop-
cum-Seminar on Lexical Typololgy, Telugu
University, Hyderabad, 1996

N (NOUN)
COM(Common)
PRP(Proper)

-PER(Personal)
-LOC(Location)
-ORG(Orgzn.)
-OTH(Others)

LOC(Locative)
CARD(Cardinal)

PRO (Pronoun)
PER(Personal)
INTG(Interrogative)
REF(Reflexive)
INDF(Indefinite)

ADJ (Adjective)
DEM(Demonstrative)
QNTF(Quantifying)
ORD(Ordinal)
ABS(Absolute)

ADV (Adverbs)
MAN(Manner)
CONJ(Conjunctive)
PLA(Place)
TIM(Time)
NEG(Negative)
QW(Question Word)
INTF(Intensifier)
POSN(Post-Nominal
Modifier)
ABS (Absolute)

CONJ
(Conjunction)

SUB(Subordinating)
COOR(Coordinating)

V (Verb)
IN(Intransitive)
TR(Transitive)
BI(Bitransitive)
DEFE(defective)

INTJ
(Interjection)
SYMB
(Symbol)

Table 1: LERC-UoH Tag Set

File #Sent #Tok Dict Morph M-AMB D-AMB UNK Ambiguity

F1 365 4910 2186 2389 158 170 313 328
(45%) (49%) (3%) (4%) (6%) (7%)

F2 15100 76004 45225 31103 4917 3194 20 8111
(59%) (41%) (6%) (4%) (0%) (10%)

F3 33 282 107 173 15 10 2 25
(38%) (61%) (5%) (3%) (1%) (9%)

F4 27 237 88 99 8 7 50 15
(37%) (42%) (3%) (3%) (21%) (6%)

Table 2: Tagging Performance

