
Syntactic Coherence in Word Embedding Spaces

Renjith P Ravindran† and Kavi Narayana Murthy‡

School of Computer and Information Sciences,
University of Hyderabad, Hyderabad, India
†rpr@uohyd.ac.in, ‡knmuh@yahoo.com

Abstract

Word embeddings have recently become a vital part of many Natural Language Processing (NLP)
systems. Word embeddings are a suite of techniques that represent words in a language as vectors
in an n-dimensional real space that has been shown to encode a significant amount of syntactic and
semantic information. When used in NLP systems, these representations have resulted in improved
performance across a wide range of NLP tasks. However, it is not clear how syntactic properties
interact with the more widely studied semantic properties of words. Or what the main factors in
the modeling formulation are that encourages embedding spaces to pick up more of syntactic be-
havior as opposed to semantic behavior of words. We investigate several aspects of word embedding
spaces and modeling assumptions that maximize syntactic coherence — the degree to which words
with similar syntactic properties form distinct neighbourhoods in the embedding space. We do
so in order to understand which of the existing models maximize syntactic coherence making it a
more reliable source for extracting syntactic category (POS) information. Our analysis shows that
syntactic coherence of S-CODE is superior to the other more popular and more recent embedding
techniques such as Word2vec, fastText, GloVe, and LexVec, when measured under compatible pa-
rameter settings. Our investigation also gives deeper insights into the geometry of the embedding
space with respect to syntactic coherence, and how this is influenced by context size, frequency of
words, and dimensionality of the embedding space.

Keywords: word embeddings, syntactic coherence, syntax-semantics interface, pos-tagging

1 Introduction

The Word2vec [45, 47, 48] model has been highly influential in the NLP community, as it has
convincingly showed that a remarkable amount of linguistic knowledge implicit in textual
data can easily be extracted and encoded as distributed and continuous representation of
words known popularly as word embeddings. Word embeddings are said to be distributed,
as the representation of a word depends on the representation of other words, and contin-
uous, since the words are represented using continuous numerical values. The success of
Word2vec gave rise to other widely used word embedding models such as GloVe [55] and
fastText [7]. These algorithms, are in many ways an extension of similar ideas first explored
in techniques such as Latent Semantic Analysis [15, 33]. Embedding algorithms process
word co-occurrence information in a large text corpus, either implicitly via prediction using
Artificial Neural Networks (ANNs) or explicitly through count based statistical models, to

1

rpr
Textbox
p�re-print version�International Journal of Semantic Computing (IJSC)Vol: 15 Iss: 02 pppp. 263 - 290https://dx.doi.org/10.1142/S1793351X21500057?utm_source=wspc_mail_list&utm_medium=email&utm_campaign=repr_IJSC_140721

1 Introduction 2

embed words as points, or equivalently, as vectors from the origin to these points, in an n-
dimensional Euclidean space having an emergent property that similar words tend to occupy
similar spatial positions. Thus word similarity, and hence word meaning, is implicit in the
representation. Here meaning of a word is expressed in relation to other words that share
its context. This is known as distributional semantics [27] - words with similar contexts tend
to have similar meanings. Context of a word is defined as the set of words that co-occur
with it within a specified window, in the sentences in a given corpus. The idea that word
meaning is a function of context is in contrast to traditional sources of word meaning such
as dictionaries. With meaning encoded within the representation, word embeddings have
been able to impart NLP systems with an intrinsic notion of linguistic knowledge which was
otherwise only possible extrinsically via handcrafted rules and separate knowledge resources
such as WordNet [49]. Apart from being used as good representation of words in NLP
systems, word embeddings have also been seen as a stand-alone linguistic resource. Word
embeddings have been used to induce bilingual lexicons by aligning separately learned word
embedding spaces from two different languages [46, 24], to study diachronic evolution of
languages to measure semantic change over time [26, 58], etc. Another major direction of
research interest has been to understand the nature of information encoded in the space and
its mechanisms [39, 3, 50].

Capacity of word embeddings to capture both syntactic and semantic aspects of world
knowledge has been mainly showcased by the ability to solve word analogy problems such
as of the form – if A is to B then C is to what? eg. syntactic - run:ran :: sleep:slept,
semantic - Japan:Tokyo :: China:Beijing. Word embeddings are able to predict the ap-
propriate answer word, the underlined word in the above analogy expressions, because the
relation between two words is captured by the vector difference between those words, which
in ideal conditions, is expected to be constant for any pair of words sharing that relation.
While this ability does not seem to correlate well with performance in specific NLP tasks
such as Named Entity Recognition or Sentiment Classification [64, 11], and has been subject
to criticisms [41], it nonetheless has become a benchmark test for judging embedding qual-
ity. Word analogy problems and other evaluation measures show that both syntactic and
semantic information available in textual data can be captured by the embedding algorithm
as functions of word context. However, all this opens up a few pertinent questions – Are
syntactic and semantic aspects interleaved and tightly bound to each other in the embedding
space? Or are they separate functions of word context, can they be separated out? Are there
major factors in the modeling formulation that encourage embeddings to pick up more of
syntactic information than semantics? if so, can the existing embedding algorithms be used
to extract syntactic word category information? Unsupervised learning techniques that can
induce syntactic category or parts-of-speech (POS) of words are of great value especially for
NLP systems in resource poor languages where good quality POS tagged text data is not
widely available. If word embedding spaces exhibit high degree of syntactic coherence, ie.
if words with similar syntactic properties are located in distinct neighbourhoods in the em-
bedding space, then the words may perhaps be automatically classified to different syntactic
categories by cluster analysis of the embedding space.

In this work we probe word embedding spaces for syntactic coherence. Syntactic coher-
ence is the degree to which words in a neighbourhood in the embedding space are of similar
syntactic category. In this paper we restrict ourselves to understanding the geometry of
word embeddings spaces with respect to syntactic coherence, we do not attempt to perform
POS induction via clustering. We use the 100-Million-word POS tagged British National
Corpus (BNC) [36] to learn embedding spaces using Word2vec, fastText, GloVe, LexVec [63]

2 Related Works 3

and S-CODE [43] approaches. We use the POS tag information in the corpus to judge syn-
tactic coherence of the learned spaces. Our results show that modeling assumptions made
by S-CODE maximize syntactic coherence and thus S-CODE is superior to other models in
this regard. We show that syntactic coherence is related to semantic similarity, by analysing
the effect of word context and show that syntactic coherence is maximized with a narrow
context window and an appropriate embedding dimension. Further, we study the impact
of word frequency on syntactic coherence and the distributional behavior of the four major
syntactic word categories. More importantly, we critically analyse the major factors in the
formulation of word embedding models that tend to maximize syntactic coherence.

2 Related Works

As far as we know there has been no detailed analysis on syntactic coherence of word
embedding spaces. However the idea of using word context to infer syntactic categories have
been well explored in linguistics, cognitive science and machine learning (ML) literature.
In contemporary linguistics, syntactic categories of words are defined by the role a word
plays in the structure of a sentence. Syntactic categories therefore can be identified using
distributional tests according to which, if a word in a particular position in a sentence can
be replaced by another word then the two words belong to the same category. Thus the set
of words that can fill in a position (word-slot) in a sentence belong to the same syntactic
category. For example all the words that fill the blank in ‘The big has fleas.’ belong
to noun category [56]. The distribution of a word’s position in the structured environment
of a sentence is therefore indicative of its syntactic category. The distributional criteria
overcomes the pitfalls associated with notional or semantic criteria of traditional grammar,
which try to define syntactic categories using semantics; nouns are objects or entities, verbs
are actions, etc. In cognitive science, distributional analysis is used to model syntactic
category acquisition, as part of first language learning in children. Cluster analysis on word
co-occurrences in child directed speech, show that distributional information is a major
source for syntactic category acquisition [10, 57] along with semantics, morphology and
phonology. These studies have shown that word co-occurrence statistics are a reliable source
of syntactic information, however these are mostly qualitative studies on small scale data.

In the machine learning community, induction of POS tags was one of the earliest re-
search interests within unsupervised techniques for NLP [12]. While supervised POS tagging
consistently gave superior results, the promise of unsupervised methods was to extend NLP
to resource poor languages. The main technique employed here is the Hidden Markov
Model (HMM), which models a sentence as a sequence of words, which is generated from a
sequence of latent states. The latent states correspond to syntactic categories. The unsu-
pervised estimation of the optimal state sequence is then carried out using a variant of the
Expectation-Maximization (EM) algorithm known as the Baum-Welch algorithm. Viterbi
algorithm is then used to find the optimal state sequence. However, HMMs trained using
EM have two main issues – the tendency to assign similar number of words to each state
(POS), and the need to specify number of states [31]. Bayesian methods were employed to
incorporate required sparsity to reflect the skewed distributions of POS categories observed
in language data [22, 18]. Bayesian methods also avoided the need to specify the number of
POS tags. The possibility of using word embeddings spaces to induce good quality POS tags
was shown by S-CODE embeddings [43, 21]. Unlike HMMs, the S-CODE embeddings model
the joint distribution of word co-occurrences directly through distance between embeddings
without relying on discrete states. Utilizing symmetric (both left and right) context of

3 Background 4

words, S-CODE induces an embedding for each word type. This simpler technique out-
performed HMMs, even though it ignored the possibility of multiple tags per word type.
The authors suggest that this was likely because the HMMs are over parameterized, as it
allowed token specific tags, and that it did not consider symmetric context. Similarly, by
making the assumption of one-tag-per-word, [35] showed that unsupervised HMM taggers
can be simplified, thereby performing better than the more general models. The current
state-of-the-art performance in unsupervised POS induction reported by [67] is obtained by
augmenting S-CODE embeddings with paradigmatic context information via substitute vec-
tors along with orthographic features of [6] and morphological features given by Morfessor
[14]. More recently, invertible neural networks have been used to obtain embedding spaces
with better syntactic coherence [28].

w1

wt

wv

w1

wc

wv

...

...

...

...

Input layer

Hidden layer

Output layer

uwt

vwc

Fig. 1: Word2vec model architecture (simplified).

3 Background

In this section we present the mathematical formulation of word embedding models evaluated
in this paper. We bring out the similarities and differences between these models so that we
can understand their influence on syntactic coherence. We also briefly mention the existing
benchmark evaluations available for word embedding models.

3.1 Word2vec

The Word2vec model [45, 47, 48] is a simple feed forward neural network that is trained to
predict word context within sentences. The network with a single hidden layer and certain
optimization techniques, makes training even on a Billion word corpus relatively easy. Once
training is completed, the weight vector associated with each word in the neural net is taken
to be its embedding. Word2vec provides two main variants – Skip-Gram and Continuous
Bag of Words (CBOW). In the skip-gram variant, the context prediction is one-to-many,
ie. given a target word the network predicts all its surrounding context words. In CBOW
the direction is reversed with many-to-one prediction, given a bag of surrounding context
words, the goal is to predict the target word. Thus in one variant the target predicts the
context and in the other, context predicts the target. The context for every target word in a
sentence is decided by the ‘window-size’ parameter, which allows picking the corresponding

3 Background 5

number of words from both sides of the target word in a sentence to form the context. We
present below the main aspects of Word2vec with reference to its skip-gram variant. The
objective function of skip-gram model is to maximize the following log-likelihood:

L =

T∑
t=1

∑
c∈Cs

t

log p(wc|wt) (1)

Cs
t = {c|t− s ≥ c ≤ t+ s, c 6= t} (2)

Where wc is a context word of a target word wt. Cs
t is a set of 2s context tokens from

either sides of the target token, s is the window size, and T is the total number of tokens in
the corpus. Since the likelihood is defined over the entire collection of tokens in the corpus,
this formulation implicitly gives more weightage to frequent words. The probability of a
word being a context word of a given target word p(wc|wt) is defined using the softmax
(equation 3), where uw is the set of hidden layer weights connecting the corresponding word
in the input layer to the hidden layer, and vw the weights that connect the hidden layer to
the corresponding word in the output layer. Also, V is the size of the vocabulary or the
total number of word types in the corpus. Thus each word w has two representations, input
representation uw and output representation vw, generally the input representation is taken
as final embedding. Figure 1 shows the 3 layer fully connected architecture of Word2vec,
where the solid-line connections are the weight vectors (vwt , uwc) associated with an active
word-context pair wt, wc. The softmax relates the conditional probability of a context word
given a target word to the dot product between the representations of these words. Since
the dot product relates two vectors by their angular distance, higher the probability of
two words being in the context of each other, lower will be the angular distance, between
their embeddings. The denominator of the softmax is a summation over all words in the
vocabulary of the corpus and is computed for every word token in the corpus. Computing
the denominator thus becomes impractical for a relatively large training corpus. Word2vec
employs techniques such as negative-sampling or hierarchical softmax to solve this issue.

p(wc|wt) =
euwt

Tvwc∑V
j=1 e

uwj
Tvwc

(3)

Negative Sampling [47] scheme is based on Noise Contrastive Estimation (NCE) [25, 52,
51] - a method to fit un-normalized models. The basic idea is to pose density estimation
as a classification problem in order to discriminate true samples from noise samples. It
uses logistic regression to fit models that are not explicitly normalized thus avoiding the
denominator in equation 3. The formulation is as given by equation 4 where σ(x) is the
sigmoid function used in logistic regression. For each true context word, k negative samples
are drawn from a uni-gram1 distribution N . This approximate likelihood function is a
variant of NCE, but it does not share the asymptotic consistency guarantees that NCE
offers [16]. However, negative sampling is good enough for representation learning and also
gives substantial performance gains.

p(wc|wt) = σ(uwt

Tvwc)
∏

wn∈Nk

σ(−uwn

Tvwt) (4)

1 to be precise, Word2vec uses uni-gram count values raised to the power of 3
4

3 Background 6

Hierarchical Softmax [47], on the other hand, is not an approximation but a more efficient
way to compute the Multinomial distribution by leveraging an additional structure. This
follows from word-classing in language models [23, 53]. Here the idea is to pose the original
Multinomial distribution as product of Bernoulli distributions constructed in a special way
using a hierarchical classification of the words. This is done by decomposing the probability
mass into a binary tree, where the leaf nodes represent words in the vocabulary and each
internal node encodes the probability that the predicted word is in the left/right sub-tree
conditioned on its parent node. Unlike the standard formulation where each word gets two
representations, here each word gets one representation uw and each internal node in the
tree gets one representation vn. The probability of a particular word is expressed as a
product of probabilistic binary choices from root node to corresponding leaf node, given by
equation 5. L(w) gives the number of nodes in the path from root node to leaf node of word
w, n(w, j) is the jth node in path to leaf node of word w, lc(n) gives the left child node of
node n, and Ja = bK results in +1 if a = b else -1.

p(wc|wt) =

L(wc)−1∏
j=1

σ
(
Jn(wc, j + 1) = lc(n(wc, j))Kvn(wc,j)

Tuwt

)
(5)

If a balanced binary tree is used to form the word hierarchy the computational complexity
is reduced from O(V) to O(log2(V)), where V is size of the vocabulary. Word2vec uses a
Huffman tree and still obtains major computational gains.

3.2 fastText

fastText [7] is a neural word embedding model that is very similar to Word2vec as it bor-
rows Word2vec’s overall formulation and optimization techniques. However, it proposes to
improve the representation of rare words by incorporating sub-word information. Often rare
words are some morphological variants of a frequent word, and thus share some of its sub-
word parts. By leveraging sub-word information a rare word may borrow statistical strength
from similar words that are more frequent. fastText simplifies the idea of sub-words by sim-
ply considering the word itself and all its character-level n-grams, for n in some range, to be
its sub-words. Every sub-word is given an embedding and the embedding of a word is taken
as the average of embeddings of its sub-words. Word2vec captures distributional interac-
tions between two words via the dot-product of the embeddings of those words. fastText
generalizes the interactions to be a function (score) that simply sums up the dot-products
between sub-word embeddings of corresponding words, given by equation 6, where G(w)
gives all the sub-words of word w and zg is a corresponding sub-word embedding. The
score between two words is used to compute the conditional probabilities via the softmax,
equation 7. The rest of the formulation is same as Word2vec’s.

s(wt, wc) =
∑

g∈G(wt)

zTgvwc (6)

p(wc|wt) =
es(wt,wc)∑V
j=1 e

s(wj ,wc)
(7)

3 Background 7

3.3 GloVe

Unlike Word2vec and fastText which learn word embeddings by prediction, the GloVe [55]
vectors are learned directly from word co-occurrence counts. The log of co-occurrence counts
for a pair of words within a window across all sentences in the corpus is modeled as the
dot-product of two corresponding word vectors in an n-dimensional space. The vectors are
then found by weighted least-squares regression model.

L =

V,V∑
i,j=1,1

f(Mi,j)(u
ᵀ
wi
vwj

+ bi + bj − logMi,j)
2 (8)

Equation 8 gives the loss function of the GloVe model, which is defined over all word
pairs from the vocabulary of size V . Mi,j gives the total co-occurrence count of words wi

and wj in the corpus. f(Mi,j) weighs each word pair as a function of their co-occurrence
count. bi and bj are bias terms. The authors claim that GloVe’s ability to consider global
word statistics is advantageous and therefore better than Word2vec which, during each
prediction, has access only to local word statistics.

3.4 LexVec

LexVec [63] is another count based word embedding model that directly process word co-
occurrence statistics like GloVe but with a learning procedure that is similar to Word2vec.
The co-occurrence statistic utilized by LexVec is the Positive Point-wise Mutual Information
(PPMI) and not the log co-occurrence counts as in GloVe. The Point-wise Mutual Infor-
mation (PMI) is given by equation 9. When a co-occurrence count matrix M with counts
of word-context pairs (wt, wc) is given, PMI can be computed as in equation 10, where ∗
represents summation across the corresponding index. The PMI is ill-defined for any word
pair that does not occur in the corpus, resulting in −∞. In practice, often its variant called
Positive PMI is used, equation 11.

PMIwt,wc = log
p(wt, wc)

p(wt)p(wc)
(9)

= log
Mwt,wc M∗,∗
Mwt,∗M∗,wc

(10)

PPMIwt,wc = max(0, PMIwt,wc) (11)

It has been shown that the window based negative sampling used in Word2vec performs
implicit weighted factorization of a shifted PMI matrix [39]. But unlike other techniques
for matrix factorization such as SVD, which uses L2 reconstruction loss that weighs all
errors equally, Word2vec’s window based negative sampling leads to a reconstruction loss
that weighs error of frequent words more heavily. Since PPMI seems to work better for
semantic tasks than PMI [9], LexVec chooses explicit factorization of the PPMI matrix with
Word2vec’s weighing scheme.

Lwt,wc
=

1

2
(uT

wt
vwc
− PPMIwc,wt

)2 (12)

Lwt
=

1

2

∑
wn∈Nk(wt)

(uT
wt
vwn
− PPMIwn,wt

)2 (13)

3 Background 8

The learning process in LexVec involves minimizing two loss functions. Equation 12 gives
the loss function for positive co-occurring word pair tokens wt, wc as the L2 loss between
the dot product of their embeddings and the corresponding values in the PPMI matrix. For
every such positive pair, k negative words are sampled in a similar way as in Word2vec.
Equation 13 gives the loss for such negative samples.

3.5 S-CODE

S-CODE [43] also is a count based statistical model of word co-occurrences. But unlike
Word2vec or GloVe which are general purpose word embeddings, S-CODE was introduced
as an application of the CODE embeddings to POS induction. S-CODE is the spherical
variant of CODE [21]. The CODE embedding is a co-occurrence model for heterogeneous
data objects, say images and text, which may be used for exploratory analysis or data
visualization. Here, considering word-word bi-grams as data objects, CODE maps a word
w to two points in the embedding space, one reflecting its left position in a bi-gram φ(w)
and the other the right position in the bigram ψ(w). Thus the window-size is always 1.
The final embedding of a word is the concatenation of the two embeddings. Like other
embedding models, the goal is to have the geometry of the embedding space reflect the
statistical relation between two words in a corpus. The authors of CODE suggest that, one
way to do this is to model the joint distribution p(x, y) of words x and y as proportional

to e−d
2
x,y , where d2x,y is the Euclidean distance between the embeddings φ(x) and ψ(y).

However, the formulation will have influence of the marginals p(x) and p(y). To model only
the statistical relation between x and y avoiding the influence of marginals, CODE considers

the ratio rp(x, y) = p(x,y)
p(x)p(y) . The log of rp(x, y) is the Point-wise Mutual Information (PMI).

Equation 14 shows this formulation where Z is the partition function or the normalizing
constant.

p(x, y) =
1

Z
p(x)p(y)e−d

2
x,y (14)

Z =
∑
x,y

p(x)p(y)e−d
2
x,y (15)

However, this leads to significant complications in parameter estimation as the choice of
p(x), p(y) and d2x,y should all be consistent with p(x, y). The model is simplified replacing
the marginals with empirical marginals p(x) and p(y) as in equation 16.

p(x, y) =
1

Z
p(x)p(y)e−d

2
x,y (16)

The likelihood parameterized by the embeddings for words x and y is defined as the expected
value of the log model bi-gram probability under the empirical bi-gram distribution (equation
17).

L =
∑
x,y

p(x, y) log p(x, y) (17)

= −
∑
x,y

p(x, y)d2x,y − log Z +
∑
x,y

p(x, y) log(p(x)p(y)) (18)

3 Background 9

Equation 18 can be intuitively understood as follows. The third term in equation is inde-
pendent of the parameters and is therefore a constant. The first term is the negative mean
distance of all points. Due to this term the likelihood is maximized when distances between
all points are zero, i.e. when all words are mapped to the same embedding. However the
second term acts as a regularizer, pushing embeddings φ(x) and ψ(y) apart and thus away
from the trivial solution.

For a large corpus, computing the normalizing constant Z for each bi-gram in each
iteration during the training is impractical. Instead, it is found that by applying a sphere
constraint on the embedding space, i.e. by forcing the embeddings to have unit length, the
dynamic variable Z can be replaced with constant Z̃ which can be pre-computed. While the
sphere constraint stabilizes Z it also makes gradient-ascent considerably smooth allowing
for larger step sizes resulting in faster convergence.

3.6 Benchmark Evaluations

The interest in word embedding models is two-fold. One is the interest of the machine
learning community to improve performance on various NLP tasks. The other is the inter-
est of cognitive scientists and computational linguists to explain lexical semantics and its
acquisition. Similarly, evaluation of word embedding techniques is also of two kinds. Ex-
trinsic evaluations test embedding on downstream NLP tasks such as sentiment analysis
or machine translation. Intrinsic evaluations, on the other hand, test various linguistic
capabilities more directly. Major intrinsic evaluation tasks and data-sets can be classified
as follows:

1. Similarity tasks measure how well the embedding space encodes word similarity the
way humans perceive it. Humans are asked to rate given pairs of words for their
similarity on a numerical scale. This data-set is then used to measure the correlation
(Pearson/Spearman’s) between the average human ratings and similarity as measured
in the embedding space via cosine similarity. Popular similarity data sets are RG [59],
WS-353 [17], MEN [8], SimLex999 [29], etc.

2. Categorization tasks require clustering of a set of words into gold standard cate-
gories in the embedding space. The purity of the obtained clusters is then measured.
Categorization task may be considered as more reliable than the similarity task be-
cause choosing a word to belong to a category is relative to other words in the set
and not an absolute measure like the similarity scores given by human raters. Popular
categorization data-sets are AP [2], Battig [4], BLESS [5], etc.

3. Analogy tasks require embeddings to solve word analogy problems. It is posited that
the relation between any two words of a given relation is encoded in their correspond-
ing difference vectors. Therefore vector algebra can solve for an unknown vector, eg
Beijingvec ∼ Japanvec − Tokyovec + Chinavec. Solving word analogies were popular-
ized by Word2vec, however the idea was first introduced 40 years before in [60]. The
Word2vec papers introduced two data-sets: One with both syntactic and semantic
analogies called Google and the other with only syntactic analogies called MSR.

4 Experiment Setup 10

BNC Tag Hierarchy

verb

vvb: 12968, 1192659
vvd: 8429, 1866391
vvg: 9367, 1230118
vvi: 8654, 2412540

vvn: 8366, 2020216
vvz: 6789, 709666

noun
nn0: 30232, 500503
nn1: 115339, 14430585
nn2: 58130, 5218330
np0: 156002, 3854603

adjective aj0: 98280, 6388568
ajc: 1539, 196566
ajs: 1027, 92796

adverb
av0: 8735, 4547143

non-lex
pur: 4, 432472
pul: 8, 426262

puq: 9, 1664777
zz0: 421, 159819
ord: 802, 346678

crd: 57867, 1840718

pun: 52, 11090844
unc: 58976, 515505

be
vbi: 6, 643864

vbg: 6, 84994
vbn: 8, 259852
vbd: 42, 1194890
vbb: 50, 638998
vbz: 64, 1301846

do

vdg: 7, 27173
vdd: 6, 135723
vdi: 10, 80557

vdz: 7, 67662
vdn: 12, 34276
vdb: 44, 193202

have

vhn: 5, 25970
vhg: 7, 34251
vhi: 14, 201685

vhd: 20, 422917
vhb: 27, 347582
vhz: 18, 285825

question avq: 58, 242932
pnq: 24, 213692
dtq: 81, 639864

particleavp: 44, 746605
xx0: 62, 772618

cunjunction cjt: 19, 658984
cjs: 200, 1368286
cjc: 204, 3456690

determiner

dt0: 355, 2317487
at0: 276, 8695242

dps: 89, 1400684

pronoun

pnx: 103, 119462
pnp: 396, 4971510
pni: 123, 296994

preposition

prp: 418, 7907676
prf: 8, 3042194

marker

pos: 4, 493689
to0: 7, 1603532

other

ex0: 14, 245929
vm0: 101, 1432954

itj: 744, 378180

Fig. 2: A hierarchy of BNC tags along with corresponding type and token counts.

4 Experiment Setup

4.1 Corpus and POS Tag Source

We have used the British National Corpus (BNC) [36], a 100-Million-word corpus of British
English in all our experiments. BNC is a synchronic corpus and comprises of a wide range
of text samples, both written and spoken (10%), of contemporary British English. The
corpus has been annotated with part-of-speech (POS) tags of words using the CLAWS4
tagger [37, 20]. The CLAWS4 tagger is a hybrid multi-pass algorithm with lexicon based,
rule based (word endings, templates) and statistical (Viterbi alignment) components. A
core sample (2 Million words) of the corpus has been manually post-edited. Error analysis
on small portions of the corpus showed a tagging accuracy of about 95%. The main tagset
(C5) has 57 word-class tags and 4 punctuation tags. In addition to the main tagset an
extended tagset (C7) of 152 tags has been used to tag the post-edited core sample. Further,
the BNC also has what are called portmanteau tags, a total of 30, such as aj0-nn1. These
tags, also called as ambiguity tags, are assigned to words when the tagger does not have
enough information to tell them apart. These portmanteau tags cover nearly 4 million
tokens (3851373 to be precise) in the corpus. We do not consider portmanteau tags in our
experiments. Figure 2 gives type and token counts for each of the tags (C5). In the figure,
the original BNC tags, which we call fine-grained tags, have been grouped into coarse-grained
tags forming a hierarchy. For example fine-grained tags such as nn0 and nn1 belong to the
coarse-grained tag noun.

4.1.1 Major and Minor Tags

The BNC tagset has 61 tags in all. We divide the tagset into two sets: Major and Minor
tags. Minor tags are the ones that mostly mark functional and closed class words, having
low type counts or are non-lexical tokens such as punctuations or numbers. There are 47
of them. For example, forms of be, have, do verbs. Word types belonging to these tags
are often just a handful but some of these tags have considerable number word types. For
example the tag vbz is expected to have is, isn’t as the only two word types. However
tokens such as title-is, family-is are also tagged as vbz. Such hyphenated words make up
majority of word types in these tags but these occur only sparingly in the corpus. The prp

4 Experiment Setup 11

(a) Word Types (b) Word Tokens

Fig. 3: Proportion of types and tokens in the 4 major coarse-grained tags in BNC.

tag (preposition) is one of the tags that has a good number of word types. Here also 275
of the 418 word types are words that occur less than 10 times in the corpus, in hyphenated
form. Another tag that is worth mentioning here that we consider minor is itj (interjection).
It is generally considered as an open word class, but 569 of 744 word types marked with
this tag occur less than 10 times in the corpus.

The remaining 14 tags we consider as major tags — nn0, nn1, nn2, np0, vvb, vvd,
vvg, vvi, vvn, vvz, aj0, ajc, ajs and av0. These fine-grained tags are grouped to form
coarse-grained tags noun, verb, adjective, and adverb, which we shorten to nn, vv, aj,
and av respectively. We use tag ot (other) to refer to the set of all minor tags. Figure 3
gives the percentage of types and tokens belonging to each of the major coarse-grained tags
in the BNC.

4.2 Processing of Corpus

For our study we use the current version of BNC - BNC XML [13]. The corpus consists
of 4049 xml files. We parse each xml file, extract only the required information on to a
new single text file. Main considerations in this processing are the following: Any item
with a pos-tag is considered a token. However, multi-word-expressions (MWEs) are an
exception as these are also given pos-tags. We ignore pos-tag associated with MWEs and
consider words within an MWE, each with its own pos-tag, as separate tokens. Each token
is then prefixed with its C5 pos-tag (eg: nn0:love). Word casing is normalised to lower
and sentence boundaries are maintained.

This gives us a corpus with 111,976,741 tagged tokens. We use this text for all analysis.
For creating word embeddings we remove punctuations, numerals and words with brackets
and parentheses. We also remove tag-prefixes in each word token giving a token count of
98,359,290 and a type count of 641,794.

4.3 Evaluation Measure: sync-score

POS induction methods that use HMMs implicitly cluster tokens based on their distribu-
tional behavior. Quality of induced POS clusters are then evaluated using measures such
as many-to-one, V-Measure, etc [12]. Since word embedding models do not form explicit
clusters, one needs to perform clustering on the embedding space post the embedding pro-
cess. However, our goal in this paper is not to perform POS induction. Instead we are only
interested in quantifying how well syntactic information is encoded in the word embedding
space, without bringing in the complexity and limitations of clustering algorithms. We wish

5 Experiments 12

to measure the degree to which pairs of words within the embedding neighbourhood belong
to the same syntactic category. Instead of defining a neighbourhood via clusters we simply
look at m nearest neighbours.

sync-score =

∑
w∈P

∑
w′∈Em

w
δw,w′

|P| ×m
(19)

where δw,w′ =

{
1, if POS(w) = POS(w′)

0, otherwise

This gives us a simple accuracy based measure which we call syntactic coherence score or
sync-score for short (equation 19). Given a word embedding space, we probe the embedding
space with a set of n probe words (P). For each probe w we fetch its m nearest neighbours
in the embedding space (Em

w). For every probe word w and its neighbouring word w′ we
compute how often w and w′ belong to the same syntactic category ie. POS(w) = POS(w′).
POS(w) returns the common POS tag, either fine-grained or coarse-grain, associated with
word w in the given tagged corpus. Thus, sync-score measures the accuracy with which
two words in some neighbourhood in the embedding space belong to the same syntactic
category. Coherence of word embedding spaces have previously been explored in [9, 64].

4.4 Embedding Model Implementations

For Word2vec and fastText we use the Gensim2 implementations available for Python. For
GloVe and LexVec we use the original implementation of [55]3 and [63]4. For S-CODE we
could not source the original implementation of [43], we use the implementation available
in the code distribution of [67]5. Two major parameters in Word2vec, fastText, GloVe and
LexVec are window-size and embedding dimension. While embedding dimension is a major
parameter in S-CODE, window-size is not, as it is always 1. All models are trained for 5
iterations, other parameters in respective models are set to defaults in their corresponding
implementations. For benchmark evaluations we use the Python module released by the
authors of [30]6.

5 Experiments

5.1 Effect of Context on Syntactic and Semantic Behavior

Our first experiment is to evaluate the effect of context size in extracting syntactic behaviour
as opposed to semantic behavior. We wish to check if we can clearly understand these as
distinct and separate functions of word context. [9] shows that a narrow context (window-
size=1) maximize performance on both syntactic and semantic tasks. We however feel that
the tasks they employed are not expressive enough to distinguish syntactic properties from
semantic properties. Distributional tests from contemporary linguistics may offers some
insights. The set of words that can fill a position or word-slot in a sentence should agree

2 https://radimrehurek.com/gensim
3 https://nlp.stanford.edu/projects/glove/
4 https://github.com/alexandres/lexvec
5 http://www.denizyuret.com/search/label/Downloads
6 https://github.com/kudkudak/word-embeddings-benchmarks

5 Experiments 13

Fig. 4: Results of Exp 1: Effect of window-size on sync-score and other benchmarks.

in their syntactic category. However, at the same time, those words may also agree with
the semantics of the sentence. For example the word-slot in “The big has fleas.” can be
filled by any word that refers to something big that can have fleas, which is a subset of the
noun category. It is clear that the size of context dictates required semantics, the context
here being the full sentence. Instead if we consider a narrower context of one word to the
left of the word-slot, the set of words would be a larger subset of category noun as the
word-slot is influenced only by an adjective (big). Anything which can be big may be picked
up for filling the slot, there is no further semantic requirements. If we consider a broader
context, possibly beyond the given sentence, the set becomes semantically more specific and
hence smaller. Therefore, we may argue that broad context windows will capture more of
semantics and at the same time also retain appropriate syntactic information.

In distributional semantics the effect of context can be understood in terms of two
distinct yet often confounded aspects of semantics – similarity and relatedness. Two
words are similar if they share common attributes, like ‘cat’ and ‘dog’, and related if they
occur together in the world and in language usage, like ‘dog’ and ‘leash’. It seems there is
some consensus that wider context tends to capture more of relatedness and narrow context
captures more of similarity [38, 1, 32]. Since syntactic similarity can be seen as the broadest
and simplest form of similarity between words, we may reason that syntactic coherence will
be maximized with a narrow context. Word similarity does not cross syntactic categories
but word relatedness often crosses these boundaries, for eg. ‘dog’ and ‘bark’. Therefore as
broader context captures more of relatedness, it can in-effect deteriorate available syntactic
information. We put this to test by evaluating the skip-gram model of Word2vec with
varying context sizes on syntactic coherence and on major benchmark data-sets for intrinsic
evaluation of semantic content. Here we consider words that occur at least 10 times in the
corpus to be the vocabulary of the embedding space.

5 Experiments 14

Results and Observations

Figure 4 plots sync-scores for varying window sizes of the skip-gram model along with results
of other benchmark tests that showed a consistent dependence on window size. These are
MEN, RG65, WS353 and SimLex999 in similarity; MSR, semantic and syntactic portion of
Google, named GSEM and GSYN respectively, in analogy; and BLESS in categorization.
Since all these measure a value between 0 and 1, we are able show all in one plot. Similarity
task measures Spearman’s rank correlation, categorization measures cluster purity [42], and
analogy measures accuracy. At the outset we see that sync-score degrades rapidly as we
increase the window size. It does not stay the same as intuited by the distributional tests.
This is consistent with the reasoning we arrived at by relating window size to semantic
similarity and relatedness. Looking at the similarity tests, we see that except for SimLex999,
increase in window size increases the correlation values. This may seem contrary to our
hypothesis, as we expect similarity to degrade with increase in window size. However, the
authors of SimLex999 point out that a good portion of word pairs in previous data-sets that
have been rated high for similarity are in fact not so similar but more related. SimLex999
was created by explicitly instructing the annotators for measuring similarity instead of
relatedness, and therefore this is a stronger benchmark set for similarity. SimLex999 and the
other 3 relatedness dominant datasets (RG65, MEN and WS353), therefore are behaving
as expected. Coming to tests for analogy, we see that GSEM shows positive correlation
with window size. As analogies are expected to capture word relations, word pairs in
these datasets exhibit relatedness. Therefore GSEM supports our hypothesis. The trend
is somewhat reversed with syntactic analogies as shown by result of MSR. This is because
syntactically related pairs, say ‘walk’ and ‘walked’, also exhibit good amount of semantic
similarity. However, MSR and GSYN are not maximized at window-size=1, but at window-
size of 2 and 5 respectively. A possible explanation for this is that analogy tasks measure
something more than coherence. In order to solve a word analogy, embeddings of related
words should also have a consistent vector difference. This may explain the need for a slightly
wider context as it may help stabilize the direction of the difference vector between related
word pairs. Lastly the BLESS dataset, in categorization, addresses semantic relatedness, and
is consistent with our hypothesis. Thus our experiments generally agree with the hypothesis
that wider context windows maximize relatedness of words and narrow contexts maximize
similarity [38, 1, 32]. Since syntactic similarity and semantic similarity can not be addressed
in complete isolation we see that syntactic coherence is also maximized with narrow context.

5.2 Best Model for Syntactic Coherence

Our second experiment is to find the embedding model that maximizes syntactic coherence.
We consider popular general purpose models such as Word2vec, fastText, GloVe and LexVec
along with the more specialized S-CODE. We use window-size=1 for all the general purpose
models taking cue from the previous experiment. S-CODE by design has a window-size of
1. Since Word2vec has two main variants and two optimization techniques we have four
different models. The four Word2vec models are labelled - sgns, sghs, bwns, and bwhs
for skip-gram with negative sampling, skip-gram with hierarchical softmax, bag-of-words
with negative sampling, and bag-of-words with hierarchical softmax respectively. fastText
also has these 4 variants, but here we keep only its sgns variant, naming it fasttext, as it
is the default fastText model. LexVec has 3 variants, a base model as described in section
3.4, a model with positional context [61], and one with sub-word information [62]. Here
we keep only the base model, naming it lexvec. The GloVe and S-CODE models are

5 Experiments 15

dim 10 24 50 100 300 10 24 50 100 300

model major fine-grain major coarse-grain

sgns 0.59 0.67 0.66 0.65 0.63 0.81 0.82 0.82 0.81 0.79
sghs 0.56 0.66 0.66 0.65 0.62 0.76 0.82 0.82 0.81 0.79
bwns 0.65 0.72 0.72 0.72 0.71 0.84 0.86 0.86 0.86 0.85
bwhs 0.65 0.72 0.72 0.71 0.69 0.84 0.86 0.86 0.86 0.85
fasttext 0.59 0.69 0.69 0.68 0.65 0.80 0.83 0.83 0.82 0.81
glove 0.47 0.49 0.51 0.51 0.51 0.68 0.69 0.70 0.70 0.70
lexvec 0.35 0.47 0.48 0.48 0.45 0.57 0.71 0.71 0.69 0.67
scode 0.74 0.79 0.80 0.80 0.80 0.91 0.91 0.91 0.91 0.91
rand 0.16 0.16 0.16 0.16 0.16 0.42 0.42 0.42 0.42 0.42

Tab. 1: Results of Exp 2: Sync-scores for embedding models under study.

named glove and scode respectively. We have seen that distribution of syntactic categories
is highly non-uniform (figure 3). For example around 70% of words are nouns. To get
an idea of maximum sync-score possible by the very nature of word distributions, we test
the syntactic coherence of random embedding spaces also. The rand embedding models
have words attached to random points with the value at each dimension being drawn from
a uniform distribution between -2.0 and +2.0. This gives a total of 9 embedding models.
Since the optimal embedding dimension for syntactic coherence is not known, all the models
are trained on varying embedding dimensions – 10, 24, 50, 100 and 300 giving a total of 45
embedding spaces. The embedding spaces are tested on major fine-grained tags as well as
major coarse-grained tags. In this experiment we limit the model vocabulary to words that
have occurred at least 100 times in the corpus, giving a vocabulary of around 31K words in
each model. All other words in the input corpus are replaced with UNK token before training.
The syntactic coherence is measured using all 31K words as probe words, and considering
200 nearest neighbours for each word.

Results and Observations

Table 1 gives the results of this experiment. The most striking observation is that S-CODE
embeddings are superior to all other embeddings by a large margin, giving fine-grained
and coarse-grained sync-scores of 80% and 91% respectively while the next best is given by
Word2vec (72% and 86% respectively). The other striking observation is the rather poor
performance of GloVe and LexVec embeddings. LexVec mostly performs inferior to GloVe,
suggesting that at least when it comes to syntactic coherence, PPMI is no better than bi-
gram counts. In Word2vec models, bag-of-words outperforms skip-gram by about 5%. This
is due to the fact that skip-gram is a bi-gram model while bag-of-words with window size of
1 is a tri-gram model, and therefore has access to more distributional information at once.
Another observation is that of the equivalence of negative-sampling and hierarchical softmax.
The former is an approximation of the latter, however negative sampling is almost equivalent
or even slightly better than hierarchical softmax. Incorporating sub-word information, as
with fastText, offers a small advantage over vanilla sgns. Though it should be noted that in
this experiment we have dealt only with frequent words, and fastText’s claimed advantage
is over rare words. Another interesting observation is the influence of embedding dimension
on sync-score. The sync-scores seem to peak around dimension 50, though this is not very

5 Experiments 16

freq-range nn% vv% aj% av% ot% total

[1K,∞) 54 20 14 4 7 7195
[100, 1K) 60 17 16 3 5 23973
[80, 100) 61 15 16 3 5 4225
[60, 80) 64 13 15 2 7 6042
[40, 60) 64 12 14 2 7 10328
[20, 40) 66 10 14 2 8 22747
[10, 20) 66 7 15 2 10 33491
[6, 10) 64 6 15 1 11 36805
[1, 6) 46 3 14 1 21 496771
[1, 6)∗ 46 3 14 1 20 30000

Tab. 2: Distribution of coarse-grained tags on varying word frequency ranges in the BNC.

Fig. 5: Results of Exp 3: Sync-scores for varying frequency ranges of probe words.

evident in table 1 due to the decimal rounding. This suggests that lower dimensional spaces
may not have enough capacity to encode the required distributional information. Also, after
reaching an optimum dimension, adding further dimensions tends to pick up more of noise
that degrades the performance. Interestingly we find that some peaks are more flat than
others. For example, with S-CODE the maximum for coarse-gained sync-score happens at
dimension 100, which is observable only in the 5th decimal place. This suggests that the
modeling formulation of S-CODE is not only optimal but also more robust as it is least
perturbed by the choice of embedding dimension.

5.3 Syntactic Coherence and Word Frequency

Our third experiment is to throw some light on the behaviour of syntactic coherence as a
function of frequency of probe words in the corpus. Frequent words generally obtain good
embeddings. Word frequencies in any corpus follow a power-law distribution and have very
long tails, accounting for large number of words that occur only a few times. Frequent
words are only a tiny minority in any corpus. Table 2 gives the distribution of major coarse-
grained tags for words in varying word frequency ranges. Frequency range denoted as [x, y)
indicates a set of words that have occurred more than or equal to x and less than y times
in the corpus. The frequency range [1, 6) has around half a Million words. To reduce the
computational requirements of this experiment we take a random sample of 30K words from
the set of words in this frequency range, shown in table 2 as [1, 6)∗. For each frequency

5 Experiments 17

range [x, y), a 50 dimensional embedding space is created with words that occur at least x
times. This is done with every embedding model under study. For each embedding space
with a vocabulary of words that occur at least x times, the set of words in corresponding
frequency range of [x, y) is used as probe words to measure major coarse-grained sync-score.

Results and Observations

Figure 5 shows the plot of major coarse-grained sync-score, for all the models having an
embedding dimension of 50, against frequency range of probe words. We see that S-CODE
embeddings dominate other models on all frequency ranges except the last two. By lever-
aging sub-word information, fastText is able to beat S-CODE at very low frequency ranges.
While performance of all models gradually taper downwards as the frequency of probe words
diminishes, fastText is able to maintain its performance, taking a dip only at the lowest fre-
quency range. Incorporating sub-word information clearly stands out as a very effective
method to improve representation of rare words. We see that the highest frequency range is
not the one with maximum sync-score. This is expected, as most frequently occurring words
are also generally highly ambiguous. S-CODE, Word2vec models and LexVec display similar
sensitivity towards probe word frequency. However, GloVe’s behavior is slightly different.
The difference in sync-score from frequency range [100, 1K) to [80, 100) is noticeably larger
in GloVe. GloVe appears to be more susceptible to influence of word frequency compared
to other embedding models. In the previous experiment negative sampling and hierarchical
softmax appeared rather equivalent. But in this experiment we see that when it comes to
rare words, as is more evident in bag-of-words models, hierarchical softmax offers a consider-
able performance boost over negative sampling, giving some credence to the understanding
that un-normalized models can approximate the true model when the sample size is large
enough, but fail to do so in more parsimonious situations.

5.4 Per Category Syntactic Coherence with Varying Neighborhood
Sizes

Our previous experiments explored expected syntactic coherence in the entire embedding
space. In this experiment we evaluate the coherence exhibited by words in each of the
four major syntactic categories separately. In order to better understand the geometry of
the word embedding spaces with respect to syntactic coherence we do so while considering
varying number of nearest neighbours in the computation of sync-score. Here we vary the
number of nearest neighbours from 50 to 1000 in steps of 100. Note that the number of
nearest neighbours is one of the two parameters required to compute sync-score, the other
being the set of probe words, variations of which we explored in the previous experiment.
We test 50 dimensional embeddings of sgns, bwhs, scode, fasttext, lexvec and glove,
with a vocabulary of words occurring at least 100 times. Also, we use the entire vocabulary
of the embedding space as probe words.

Results and Observations

Plots in Figure 6 show how per category sync-scores degrade as we increase neighbourhood
sizes from 50 to 1000. Across all models we see that nouns have relatively high and stable
sync-scores up to 1000 nearest neighbours. Coherence of adverbs on the other hand is
most susceptible to the size of neighborhoods in the embedding space. It is evident that
distributional behavior of adverbs is least distinct when compared to the rest. However,

6 Discussion 18

Fig. 6: Results of Exp 4: Syntactic coherence of major syntactic categories with varying
neighbourhood sizes.

one must also take in to consideration the fact that while nouns are represented here by
around 18K words in the embedding space, the number of adverbs is only around 1K.
Apart from giving high and stable sync-scores for nouns, verbs and adjectives we see that
S-CODE’s sync-score for adverbs is minimally steep over varying neighbourhood sizes. Also
interestingly, sync-scores of GloVe seem to be least influenced by larger neighbourhood sizes
but the scores are relatively poorer even in small neighbourhoods.

6 Discussion

Our experiments have quantitatively measured the capacity of various word embedding
models to encode syntactic category information as distinct neighborhoods. For a more
qualitative understanding we visualize the embedding spaces in figure 7, by first perform-
ing dimensionality reduction using PCA. The quality of syntactic coherence in S-CODE
embeddings stands out from the rest in comparison. It is a clear indicator of the distinct
distributional behavior of the four major syntactic word categories, which comes to light
under appropriate modeling assumptions. Also, it agrees with the observation we made in
the previous section that the distributional behaviour of adverbs is least distinct, as these
words are observably more spread out in all embedding models.

In each experiment we have tried to reason about specific aspects of the modeling for-
mulation in different embedding models that are indicative of being causative of certain
desirable properties when it comes to syntactic coherence. We have only evaluated existing
models, and used them as-is. We collate our observations and rationalization below.

1. We clearly see that the optimum context is a symmetric window of size of one, i.e one
context word towards the left and one context word to the right of the target word.
However, we note that the possibility of asymmetric windows, i.e. either just left con-
text or just the right context, is not explored here. Our study also showed the need to

6 Discussion 19

Fig. 7: Visualization of syntactic coherence in the studied embedding spaces.

identify the optimal embedding dimension in order to maximize syntactic coherence.
We find that a dimension between 50 and 100 generally works well enough. However,
we note that this range is very much dependent on the corpus used, as shown by [68].
But more importantly, they give a theoretical proof that the optimal dimensionality
may be understood as the bias-variance trade-off of a novel loss function defined be-
tween the real embedding space and the ideal one. This also can be interpreted as
the signal-to-noise ratio from information theory, according to which they reason that
dimensions below the optimal loses signal and the ones above the optimal adds noise.

2. We find that S-CODE generally outperforms other models by a large margin. One of
the main factors that lead to this is the separation of left and right context in S-CODE’s
formulation. S-CODE embedding is a concatenation of two separate embeddings, one
of left context of words and the other of the right context. In all other models this
separation is not maintained. A systematic study in [9] has also shown that keeping
contexts separate is better for syntactic tasks than having them summed up.

3. Word2vec introduced two optimization techniques aimed at reducing the training time
on a large corpus. In experiment 3 we find that hierarchical softmax is a better
alternative, as it handles rare words much better than negative sampling. The two
are otherwise fairly equivalent in our case. We could not find any papers in the
literature that report similar findings, but this understanding is generally accepted by
the authors of Word2vec [44].

4. The optimization trick employed by S-CODE is to constrain the embedding space
to be spherical by normalizing the vector norms to unit length. This follows from a
finding that doing so stabilizes the value of the normalizing constant which thus can be
precomputed, drastically speeding-up the training process. Apart from computational
gains, we feel that this is another important factor that contributed to success of
S-CODE in our experiments. Because by constraining vector lengths the model is
forced to encode information more along the direction of vectors, encouraging distinct
vectors to be angularly more spread out. Bounding the max value of the norm, hence

6 Discussion 20

called max-norm, has been understood as a regularization method in collaborative
filtering [34]. [19] showed that such norm bounds happen implicitly in sgns due to
SGD. [66] showed that explicit normalization improves the retro-fitting of bilingual
embeddings used in dictionary induction. Also such normalization is currently part of
the ‘bag-of-tricks’ in deep learning research after being introduced in [65].

5. Incorporating sub-word information into the representation of words came out to be
really effective to deal with the problem of sparsity when it comes to rare words.
Simply taking the sum of character level n-grams of each word, as shown by fastText,
is a good strategy to tackle the problem.

6. A major decision in the modeling formulation is the choice of what to encode in the
embedding space. What is the appropriate word co-occurrence statistic that maximizes
the signal-to-noise ratio particularly for syntactic coherence? We saw log of bi-gram
counts in Glove, Positive PMI in LexVec, and PMI in S-CODE. Word2vec and fastText
being predictive neural models, they do not have to choose the appropriate statistic.
However, we know that Word2vec’s sgns implicitly factorizes the PMI matrix [39].
Since S-CODE performs much better than all other models, we may reason that PMI
plays a major role. The authors of S-CODE point out that PMI nullifies the influence of
marginals (or word uni-gram frequency) therefore is a stronger measure of association
than raw joint probabilities (or word-word bi-gram frequency). In our experiments
we saw that GloVe was more susceptible to word frequency, suggesting that word
frequency information is a source of noise when syntactic coherence is concerned.
[64] show that word embeddings can quite accurately predict occurrence frequency of
words, GloVe being much better at it than Word2vec. [54] show that top principle
components of word embeddings encode word frequency information, thus having those
removed makes the embeddings stronger. Therefore we feel that, though Word2vec
implicitly deals with PMI, making it explicit as in S-CODE is yet another reason
S-CODE trumped over Word2vec.

7. Why does PMI work better than PPMI when it comes to syntactic coherence? PMI

may be expressed as log p(w|c)
p(w) , and takes values from −∞ to +∞. It is the informa-

tion gained or lost (in bits), about a word when it co-occurs with another word, as
measured by its conditional probability, over the information about itself, measured by
its marginal probability. PMI is a spectrum of both positive and negative association
measures, the negative spectrum being a measure of non-association. To understand
why both positive and negative spectrum is important for syntactic coherence than
just positive spectrum, we extend an argument made in [39] about why PPMI is more
valuable for semantics than PMI. Positive associations are more natural to seman-
tics than negative associations. Humans can easily think of positive associations, say
‘snow’ and ‘Canada’, but may find it much harder to come up with negatively asso-
ciated words, say ‘desert’ and ‘Canada’. But when it comes to syntactic coherence
we can easily see otherwise, positive associations tell much about syntactic behaviour
of words but so do negative associations. For example, if a word has high negative
association say with adjectives it is a good indicator that the word may not be a noun.

As Word2vec brought vector space models back to prominence, there has been some interest
in using it for POS tagging [40, 28]. One should note that word embedding models alone
cannot be used for POS tagging. Tagging is generally seen as assigning context specific POS

7 Conclusions 21

tags to a sequence of word tokens in a sentence. Word embeddings, of the kind we evaluated
here, assume one representation per word type, which is an expectation on all possible
distributional behaviors of a word type in the corpus. Therefore, the possibility of token-
level POS tagging does not directly fall out of word embeddings. However, the potential
for type-level tagging, i.e. assigning a POS tag to each word in a wordlist, is very obvious.
POS tag distributions generally tends to be sparse. As a large majority of words in a corpus
are likely to take a single predominant tag. Therefore, methods for unsupervised type-level
tagging are valuable especially for NLP systems in resource poor languages [35]. Though in
this paper we have not explored the effectiveness of type-level tagging via clustering in the
embedding space, we hope that syntactic coherence is an appropriate proxy or an important
requirement.

Lastly, we have also attempted to study interaction of syntactic coherence with semantic
properties of words. Specifically, we have tried to look at syntax and semantics as distinct
functions of word context. Our experiments showed that syntax is a function of a narrow
word context (window-size=1) and semantics, a function of broad word context. However,
we feel it is best to explain both in terms of similarity and relatedness, because when
sync-score is maximized, similarity, as measured by SimLex999, is also maximized. Thus,
narrow context essentially captures semantic similarity. POS similarity being the broadest
measure of word similarity, it too is maximized. Therefore, we may conclude that syntactic
coherence is tied up with semantic similarity which however appears to be largely separate
from semantic relatedness.

7 Conclusions

In this paper we have looked at one specific property of word embeddings, namely, Syntactic
Coherence. We have shown that a lesser known count based word embedding technique,
called S-CODE, generally outperforms the more popular methods such as Word2vec, fast-
Text, GloVe and LexVec in this regard. More importantly, we have critically analysed the
various factors in the formulation of word embedding models and how they may influence
embedding spaces to have higher syntactic coherence. Our investigations give a deeper in-
sight into the geometry of embedding spaces with respect to syntactic coherence, and how
this is influenced by context size, dimension of the space, word frequency and size of neigh-
bourhoods in an embedding space. We have explored these aspects by exhaustive coverage
of the word embedding space with a new evaluation measure known as sync-score that
utilizes POS information in a large corpus. In our attempt to juxtapose syntax and seman-
tics on the grounds of word context, we see that syntactic coherence finds its position at
lower rungs in the continuum, from gross to the subtle, of semantic similarity, and therefore,
may not be completely isolated from semantics. Although our study was limited only to
the English language, we believe the insights drawn here should be applicable to other lan-
guages as well, and should be of interest to anyone looking for unsupervised POS induction
or type-level tagging especially in resource-poor languages.

Acknowledgement

Renjith P Ravindran is funded by Department of Science and Technology (DST), Govern-
ment of India, under the Inspire Fellowship Programme.

7 Conclusions 22

References

[1] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor
Soroa. A study on similarity and relatedness using distributional and WordNet-based
approaches. In Proceedings of Human Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Association for Computational Linguis-
tics, pages 19–27, Boulder, Colorado, June 2009. Association for Computational Lin-
guistics.

[2] Abdulrahman Almuhareb and Massimo Poesio. Attribute-based and value-based clus-
tering: An evaluation. In Proceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing, pages 158–165, Barcelona, Spain, July 2004. Association
for Computational Linguistics.

[3] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent
variable model approach to pmi-based word embeddings. Transactions of the Associa-
tion for Computational Linguistics, 4:385–399, 2016.

[4] M. Baroni, B. Murphy, E. Barbu, and M. Poesio. Strudel: A corpus-based semantic
model based on properties and types. Cognitive Science, 34(2):222–254, March 2010.

[5] Marco Baroni and Alessandro Lenci. How we BLESSed distributional semantic evalu-
ation. In Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural
Language Semantics, pages 1–10, Edinburgh, UK, July 2011. Association for Compu-
tational Linguistics.

[6] Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein.
Painless unsupervised learning with features. In Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics, pages 582–590, Los Angeles, California, June 2010. Association
for Computational Linguistics.

[7] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017.

[8] Elia Bruni, Nam Khanh Tran, and Marco Baroni. Multimodal distributional semantics.
J. Artif. Int. Res., 49(1):1–47, January 2014.

[9] John A. Bullinaria and Joseph P. Levy. Extracting semantic representations from word
co-occurrence statistics: A computational study. Behavior Research Methods, pages
510–526, 2007.

[10] Timothy A. Cartwright and Michael R. Brent. Syntactic categorization in early lan-
guage acquisition: formalizing the role of distributional analysis. Cognition, 63(2):121
– 170, 1997.

[11] Billy Chiu, Anna Korhonen, and Sampo Pyysalo. Intrinsic evaluation of word vectors
fails to predict extrinsic performance. In Proceedings of the 1st Workshop on Evaluat-
ing Vector-Space Representations for NLP, pages 1–6, Berlin, Germany, August 2016.
Association for Computational Linguistics.

7 Conclusions 23

[12] Christos Christodoulopoulos, Sharon Goldwater, and Mark Steedman. Two decades
of unsupervised pos induction: How far have we come? In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, EMNLP ’10, pages
575–584, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

[13] BNC Consortium. The british national corpus, version 3 (bnc xml edition). Bodleian
Libraries, University of Oxford, 2007. http://www.natcorp.ox.ac.uk/.

[14] Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes. In Proceed-
ings of the ACL-02 Workshop on Morphological and Phonological Learning - Volume
6, MPL ’02, pages 21–30, Stroudsburg, PA, USA, 2002. Association for Computational
Linguistics.

[15] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
society for information science, 41(6):391–407, 1990.

[16] Chris Dyer. Notes on noise contrastive estimation and negative sampling. arXiv preprint
arXiv:1410.8251, 2014.

[17] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. Placing search in context: The concept revisited. ACM
Trans. Inf. Syst., 20(1):116–131, January 2002.

[18] Jianfeng Gao and Mark Johnson. A comparison of Bayesian estimators for unsupervised
Hidden Markov Model POS taggers. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 344–352, Honolulu, Hawaii, October
2008. Association for Computational Linguistics.

[19] Yihan Gao, Chao Zhang, Jian Peng, and Aditya Parameswaran. The importance of
norm regularization in linear graph embedding: Theoretical analysis and empirical
demonstration. arXiv preprint arXiv:1802.03560, 2018.

[20] R. Garside. The robust tagging ofunrestricted text: the bnc experience. In J. Thomas
and M. Short, editors, Using corpora for language research: studies in the honour
ofGeoffrey Leech Harlow, pages 167–180. Longman, 1996.

[21] Amir Globerson, Gal Chechik, Fernando Pereira, and Naftali Tishby. Euclidean em-
bedding of co-occurrence data. J. Mach. Learn. Res., 8:2265–2295, 2007.

[22] Sharon Goldwater and Tom Griffiths. A fully Bayesian approach to unsupervised part-
of-speech tagging. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 744–751, Prague, Czech Republic, June 2007. Asso-
ciation for Computational Linguistics.

[23] Joshua Goodman. Classes for fast maximum entropy training. CoRR, cs.CL/0108006,
2001.

[24] Stephan Gouws, Yoshua Bengio, and Greg Corrado. Bilbowa: Fast bilingual distributed
representations without word alignments. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 748–756, Lille, France, 07–09 Jul
2015. PMLR.

7 Conclusions 24

[25] Michael U. Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural image statistics. Journal of
Machine Learning Research, 13(11):307–361, 2012.

[26] William L. Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word embeddings
reveal statistical laws of semantic change. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1489–
1501. Association for Computational Linguistics, 2016.

[27] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[28] Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. Unsupervised learning
of syntactic structure with invertible neural projections. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 1292–1302,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics.

[29] Felix Hill, Roi Reichart, and Anna Korhonen. SimLex-999: Evaluating semantic mod-
els with (genuine) similarity estimation. Computational Linguistics, 41(4):665–695,
December 2015.

[30] Stanis law Jastrzebski, Damian Leśniak, and Wojciech Marian Czarnecki. How to eval-
uate word embeddings? on importance of data efficiency and simple supervised tasks.
arXiv preprint arXiv:1702.02170, 2017.

[31] Mark Johnson. Why doesn’t EM find good HMM POS-taggers? In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 296–305, Prague,
Czech Republic, June 2007. Association for Computational Linguistics.

[32] Douwe Kiela and Stephen Clark. A systematic study of semantic vector space model
parameters. In Proceedings of the 2nd Workshop on Continuous Vector Space Models
and their Compositionality (CVSC), pages 21–30, Gothenburg, Sweden, April 2014.
Association for Computational Linguistics.

[33] Thomas K Landauer and Susan T Dumais. A solution to plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological review, 104(2):211–240, 1997.

[34] Jason Lee, Benjamin Recht, Ruslan Salakhutdinov, Nathan Srebro, and Joel A. Tropp.
Practical large-scale optimization for max-norm regularization. In Proceedings of the
23rd International Conference on Neural Information Processing Systems - Volume 1,
NIPS’10, page 1297–1305, Red Hook, NY, USA, 2010. Curran Associates Inc.

[35] Yoong Keok Lee, Aria Haghighi, and Regina Barzilay. Simple type-level unsupervised
pos tagging. In In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 853–861, 2010.

[36] Geoffrey Leech. 100 million words of english. English Today, 9(1):9–15, 1993.

[37] Geoffrey Leech, Roger Garside, and Michael Bryant. CLAWS4: The tagging of the
British National Corpus. In COLING 1994 Volume 1: The 15th International Confer-
ence on Computational Linguistics, 1994.

7 Conclusions 25

[38] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 302–308. Association for Computational Linguistics, 2014.

[39] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factor-
ization. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pages 2177–2185, Cambridge, MA, USA,
2014. MIT Press.

[40] Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori Levin. Unsupervised POS in-
duction with word embeddings. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1311–1316, Denver, Colorado, May–June 2015. Association
for Computational Linguistics.

[41] Tal Linzen. Issues in evaluating semantic spaces using word analogies. In Proceedings of
the 1st Workshop on Evaluating Vector-Space Representations for NLP, pages 13–18.
Association for Computational Linguistics, 2016.

[42] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. Introduction to
information retrieval, chapter Flat Clustering, pages 356–360. Cambridge university
press, 2008.

[43] Yariv Maron, Michael Lamar, and Elie Bienenstock. Sphere embedding: An application
to part-of-speech induction. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems
23, pages 1567–1575. Curran Associates, Inc., 2010.

[44] Tomas Mikolov. Word2vec official web page. https://code.google.com/archive/p/word2vec/.
Accessed: 2020-08-30.

[45] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013.

[46] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among languages
for machine translation. arXiv preprint arXiv:1309.4168, 2013.

[47] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 3111–3119. Curran Associates, Inc.,
2013.

[48] Tomas Mikolov, Wen-tau Yih, and Geoffrey” Zweig. Linguistic regularities in contin-
uous space word representations. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies”, pages 746–751. Association for Computational Linguistics, 2013.

[49] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–
41, November 1995.

7 Conclusions 26

[50] David Mimno and Laure Thompson. The strange geometry of skip-gram with negative
sampling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2873–2878. Association for Computational Linguistics, 2017.

[51] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-
contrastive estimation. In Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’13, pages 2265–2273, USA, 2013.
Curran Associates Inc.

[52] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural
probabilistic language models. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML’12, page 419–426, Madison, WI,
USA, 2012. Omnipress.

[53] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language
model. In Aistats, volume 5, pages 246–252, 2005.

[54] Jiaqi Mu, Suma Bhat, and Pramod Viswanath. All-but-the-top: Simple and effective
postprocessing for word representations. CoRR, abs/1702.01417, 2017.

[55] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543, 2014.

[56] Andrew Radford and SR Anderson. Transformational grammar: A first course, vol-
ume 1. Cambridge University Press, 1988.

[57] Martin Redington, Nick Chater, and Steven Finch. Distributional information: A
powerful cue for acquiring syntactic categories. Cognitive science, 22(4):425–469, 1998.

[58] Guy D. Rosin, Eytan Adar, and Kira Radinsky. Learning word relatedness over time.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1168–1178. Association for Computational Linguistics, 2017.

[59] Herbert Rubenstein and John B. Goodenough. Contextual correlates of synonymy.
Commun. ACM, 8(10):627–633, October 1965.

[60] David E Rumelhart and Adele A Abrahamson. A model for analogical reasoning.
Cognitive Psychology, 5(1):1–28, 1973.

[61] Alexandre Salle, Marco Idiart, and Aline Villavicencio. Enhancing the lexvec dis-
tributed word representation model using positional contexts and external memory.
arXiv preprint arXiv:1606.01283, 2016.

[62] Alexandre Salle and Aline Villavicencio. Incorporating subword information into ma-
trix factorization word embeddings. In Proceedings of the Second Workshop on Sub-
word/Character LEvel Models, pages 66–71, New Orleans, June 2018. Association for
Computational Linguistics.

[63] Alexandre Salle, Aline Villavicencio, and Marco Idiart. Matrix factorization using win-
dow sampling and negative sampling for improved word representations. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 419–424, Berlin, Germany, August 2016. Association for Com-
putational Linguistics.

7 Conclusions 27

[64] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Evaluation
methods for unsupervised word embeddings. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 298–307, Lisbon, Portugal,
September 2015. Association for Computational Linguistics.

[65] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res., 15(1):1929–1958, January 2014.

[66] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word embedding and
orthogonal transform for bilingual word translation. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1006–1011, Denver, Colorado, May–June 2015.
Association for Computational Linguistics.

[67] Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. Learning syntactic categories us-
ing paradigmatic representations of word context. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 940–951, Jeju Island, Korea, July 2012. Association
for Computational Linguistics.

[68] Zi Yin and Yuanyuan Shen. On the dimensionality of word embedding. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 887–898. Curran Asso-
ciates, Inc., 2018.

